Your browser doesn't support javascript.
loading
Incorporating protein precipitation to resolve hybrid IP-LC-MS assay interference for ultrasensitive quantification of intact therapeutic insulin dimer in human plasma.
Sun, Li; Xu, Yang; Dube, Neal; Anderson, Melanie; Breidinger, Sheila; Vaddady, Pavan; Thornton, Bob; Morrow, Linda; Matthews, Randolph P; Stoch, S Aubrey; Woolf, Eric J.
Afiliação
  • Sun L; Pharmacokinetics, Pharmacodynamics, & Drug Metabolism (PPDM), MRL, Merck & Co., Inc., Kenilworth, NJ, United States. Electronic address: li_sun@merck.com.
  • Xu Y; Pharmacokinetics, Pharmacodynamics, & Drug Metabolism (PPDM), MRL, Merck & Co., Inc., Kenilworth, NJ, United States.
  • Dube N; Pharmacokinetics, Pharmacodynamics, & Drug Metabolism (PPDM), MRL, Merck & Co., Inc., Kenilworth, NJ, United States.
  • Anderson M; Pharmacokinetics, Pharmacodynamics, & Drug Metabolism (PPDM), MRL, Merck & Co., Inc., Kenilworth, NJ, United States.
  • Breidinger S; Pharmacokinetics, Pharmacodynamics, & Drug Metabolism (PPDM), MRL, Merck & Co., Inc., Kenilworth, NJ, United States.
  • Vaddady P; Pharmacokinetics, Pharmacodynamics, & Drug Metabolism (PPDM), MRL, Merck & Co., Inc., Kenilworth, NJ, United States.
  • Thornton B; Translational Pharmacology, MRL, Merck & Co., Inc., Kenilworth, NJ, United States.
  • Morrow L; ProSciento, San Diego, CA, United States.
  • Matthews RP; Translational Pharmacology, MRL, Merck & Co., Inc., Kenilworth, NJ, United States.
  • Stoch SA; Translational Pharmacology, MRL, Merck & Co., Inc., Kenilworth, NJ, United States.
  • Woolf EJ; Pharmacokinetics, Pharmacodynamics, & Drug Metabolism (PPDM), MRL, Merck & Co., Inc., Kenilworth, NJ, United States.
J Pharm Biomed Anal ; 212: 114639, 2022 Apr 01.
Article em En | MEDLINE | ID: mdl-35176654
ABSTRACT
For pharmacokinetics characterization of a therapeutic insulin dimer, an ultrasensitive plasma method was required due to the expected low circulating levels in humans. A bioanalytical strategy combining immunoprecipitation enrichment with liquid chromatography - tandem mass spectrometry (LC-MS/MS) analysis of the intact protein offers the opportunity to resolve the analyte from endogenous and exogenous insulin and insulin analogs. Nonetheless, interference from complex background matrix was observed limiting reliable measurements at the low concentration range. A sample preparation approach incorporating protein precipitation and immunoprecipitation was developed and optimized to further reduce sample complexity prior to LC-MS/MS analysis. This approach enabled a deeper level of selectivity and presented a cleaner mass spectrometric detection that may otherwise be confounded. Sample preparation was automated to allow high throughput analysis. The method reached a limit of quantitation at 0.3 ng/mL (25 pM), and a linear dynamic range from 0.3 to 300 ng/mL. Results were highly reproducible, with intra-day and inter-day precision and bias below 11%. Furthermore, the organic solvent treatment involved in protein precipitation is expected to improve assay resistance to the bias introduced by endogenous protein binding such as that exerted by anti-drug antibodies. The method was successfully applied to support clinical pharmacokinetics studies. This approach may potentially be adapted to bioanalysis of low abundance proteins.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Espectrometria de Massas em Tandem / Insulina Limite: Humans Idioma: En Revista: J Pharm Biomed Anal Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Espectrometria de Massas em Tandem / Insulina Limite: Humans Idioma: En Revista: J Pharm Biomed Anal Ano de publicação: 2022 Tipo de documento: Article