Your browser doesn't support javascript.
loading
Dipole-Modulated Charge Transport through PNP-Type Single-Molecule Junctions.
Li, Mingyao; Fu, Huanyan; Wang, Boyu; Cheng, Jie; Hu, Weilin; Yin, Bing; Peng, Peizhen; Zhou, Shuyao; Gao, Xike; Jia, Chuancheng; Guo, Xuefeng.
Afiliação
  • Li M; Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing100871, P. R. China.
  • Fu H; Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing100871, P. R. China.
  • Wang B; Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan Dis
  • Cheng J; Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan Dis
  • Hu W; Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai200032, P. R. China.
  • Yin B; Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing100871, P. R. China.
  • Peng P; Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing100871, P. R. China.
  • Zhou S; Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai200032, P. R. China.
  • Gao X; Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing100871, P. R. China.
  • Jia C; Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai200032, P. R. China.
  • Guo X; Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing100871, P. R. China.
J Am Chem Soc ; 144(45): 20797-20803, 2022 11 16.
Article em En | MEDLINE | ID: mdl-36274261
ABSTRACT
The PNP structure realized by energy band engineering is widely used in various electronic and optoelectronic devices. In this work, we succeed in constructing a PNP-type single-molecule junction and explore the intrinsic characteristics of the PNP structure at the single-molecule level. A back-to-back azulene molecule is designed with opposite ∼1.7 D dipole moments to create PNP-type single-molecule junctions. In combination with theoretical and experimental studies, it is found that the intrinsic dipole can effectively adjust single-molecule charge transport and the corresponding potential barriers. This energy band control and charge transport regulation at the single-molecule level improve deep understanding of molecular charge transport mechanisms and provide important insights into the development of high-performance functional molecular nanocircuits toward practical applications.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Nanotecnologia / Eletrônica Idioma: En Revista: J Am Chem Soc Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Nanotecnologia / Eletrônica Idioma: En Revista: J Am Chem Soc Ano de publicação: 2022 Tipo de documento: Article