Your browser doesn't support javascript.
loading
Insulin/IGF signaling regulates presynaptic glutamate release in aversive olfactory learning.
Cheng, Du; Lee, James S; Brown, Maximillian; Ebert, Margaret S; McGrath, Patrick T; Tomioka, Masahiro; Iino, Yuichi; Bargmann, Cornelia I.
Afiliação
  • Cheng D; Lulu and Anthony Wang Laboratory of Neural Circuits and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
  • Lee JS; Lulu and Anthony Wang Laboratory of Neural Circuits and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
  • Brown M; Lulu and Anthony Wang Laboratory of Neural Circuits and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA; School of Earth and Environmental Sciences, Queens College, Queens, NY 11367, USA.
  • Ebert MS; Lulu and Anthony Wang Laboratory of Neural Circuits and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
  • McGrath PT; School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA.
  • Tomioka M; Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.
  • Iino Y; Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.
  • Bargmann CI; Lulu and Anthony Wang Laboratory of Neural Circuits and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA; Chan Zuckerberg Initiative, Redwood City, CA 94063, USA. Electronic address: cori@rockefeller.edu.
Cell Rep ; 41(8): 111685, 2022 11 22.
Article em En | MEDLINE | ID: mdl-36417877
ABSTRACT
Insulin/insulin-like growth factor (IGF) receptor signaling (IIS) supports context-dependent learning in vertebrates and invertebrates. Here, we identify cell-specific mechanisms of IIS that integrate sensory information with food context to drive synaptic plasticity and learning. In the nematode Caenorhabditis elegans, pairing food deprivation with an odor such as butanone suppresses attraction to that odor. We find that aversive olfactory learning requires the insulin receptor substrate (IRS) protein IST-1 and atypical signaling through the insulin/IGF-1 receptor DAF-2. Cell-specific knockout and rescue demonstrate that DAF-2 acts in the AWCON sensory neuron, which detects butanone, and that learning preferentially depends upon the axonally localized DAF-2c isoform. Acute food deprivation increases DAF-2 levels in AWCON post-transcriptionally through an insulin- and insulin receptor substrate-1 (ist-1)-dependent process. Aversive learning alters the synaptic output of AWCON by suppressing odor-regulated glutamate release in wild-type animals, but not in ist-1 mutants, suggesting that axonal insulin signaling regulates synaptic transmission to support aversive memory.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Somatomedinas / Proteínas de Caenorhabditis elegans Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: Cell Rep Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Somatomedinas / Proteínas de Caenorhabditis elegans Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: Cell Rep Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Estados Unidos