Your browser doesn't support javascript.
loading
Near-Monochromatic Tuneable Cryogenic Niobium Electron Field Emitter.
Johnson, C W; Schmid, A K; Mankos, M; Röpke, R; Kerker, N; Wong, E K; Ogletree, D F; Minor, A M; Stibor, A.
Afiliação
  • Johnson CW; Lawrence Berkeley National Lab, Molecular Foundry, Berkeley, California 94720, USA.
  • Schmid AK; Lawrence Berkeley National Lab, Molecular Foundry, Berkeley, California 94720, USA.
  • Mankos M; Electron Optica Inc., Palo Alto, California 94303, USA.
  • Röpke R; Institute of Physics and LISA+, University of Tübingen, Tübingen 72076, Germany.
  • Kerker N; Institute of Physics and LISA+, University of Tübingen, Tübingen 72076, Germany.
  • Wong EK; Lawrence Berkeley National Lab, Molecular Foundry, Berkeley, California 94720, USA.
  • Ogletree DF; Lawrence Berkeley National Lab, Molecular Foundry, Berkeley, California 94720, USA.
  • Minor AM; Lawrence Berkeley National Lab, Molecular Foundry, Berkeley, California 94720, USA.
  • Stibor A; Department of Materials Science and Engineering, University of California, Berkeley, California 94720, USA.
Phys Rev Lett ; 129(24): 244802, 2022 Dec 09.
Article em En | MEDLINE | ID: mdl-36563244
ABSTRACT
Creating, manipulating, and detecting coherent electrons is at the heart of future quantum microscopy and spectroscopy technologies. Leveraging and specifically altering the quantum features of an electron beam source at low temperatures can enhance its emission properties. Here, we describe electron field emission from a monocrystalline, superconducting niobium nanotip at a temperature of 5.9 K. The emitted electron energy spectrum reveals an ultranarrow distribution down to 16 meV due to tunable resonant tunneling field emission via localized band states at a nanoprotrusion's apex and a cutoff at the sharp low-temperature Fermi edge. This is an order of magnitude lower than for conventional field emission electron sources. The self-focusing geometry of the tip leads to emission in an angle of 3.7°, a reduced brightness of 3.8×10^{8} A/(m^{2} sr V), and a stability of hours at 4.1 nA beam current and 69 meV energy width. This source will decrease the impact of lens aberration and enable new modes in low-energy electron microscopy, electron energy loss spectroscopy, and high-resolution vibrational spectroscopy.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Phys Rev Lett Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Phys Rev Lett Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Estados Unidos