Your browser doesn't support javascript.
loading
Deep Eutectic Solvents for Subcutaneous Delivery of Protein Therapeutics.
Curreri, Alexander M; Kim, Jayoung; Dunne, Michael; Angsantikul, Pavimol; Goetz, Morgan; Gao, Yongsheng; Mitragotri, Samir.
Afiliação
  • Curreri AM; John A. Paulson School of Engineering and Applied Sciences, Harvard University, 150 Western Ave, Allston, MA, 02134, USA.
  • Kim J; Wyss Institute for Biologically Inspired Engineering at Harvard University, 3 Blackfan St, Boston, MA, 02115, USA.
  • Dunne M; John A. Paulson School of Engineering and Applied Sciences, Harvard University, 150 Western Ave, Allston, MA, 02134, USA.
  • Angsantikul P; Wyss Institute for Biologically Inspired Engineering at Harvard University, 3 Blackfan St, Boston, MA, 02115, USA.
  • Goetz M; John A. Paulson School of Engineering and Applied Sciences, Harvard University, 150 Western Ave, Allston, MA, 02134, USA.
  • Gao Y; Wyss Institute for Biologically Inspired Engineering at Harvard University, 3 Blackfan St, Boston, MA, 02115, USA.
  • Mitragotri S; John A. Paulson School of Engineering and Applied Sciences, Harvard University, 150 Western Ave, Allston, MA, 02134, USA.
Adv Sci (Weinh) ; 10(7): e2205389, 2023 03.
Article em En | MEDLINE | ID: mdl-36642846
ABSTRACT
Proteins are among the most common therapeutics for the treatment of diabetes, autoimmune diseases, cancer, and metabolic diseases, among others. Despite their common use, current protein therapies, most of which are injectables, have several limitations. Large proteins such as monoclonal antibodies (mAbs) suffer from poor absorption after subcutaneous injections, thus forcing their administration by intravenous injections. Even small proteins such as insulin suffer from slow pharmacokinetics which poses limitations in effective management of diabetes. Here, a deep eutectic-based delivery strategy is used to offer a generalized approach for improving protein absorption after subcutaneous injections. The lead formulation enhances absorption of mAbs after subcutaneous injections by ≈200%. The same composition also improves systemic absorption of subcutaneously injected insulin faster than Humalog, the current gold-standard of rapid acting insulin. Mechanistic studies reveal that the beneficial effect of deep eutectics on subcutaneous absorption is mediated by their ability to reduce the interactions of proteins with the subcutaneous matrix, especially collagen. Studies also confirm that these deep eutectics are safe for subcutaneous injections. Deep eutectic-based formulations described here open new possibilities for subcutaneous injections of therapeutic proteins.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Produtos Biológicos / Solventes Eutéticos Profundos Limite: Humans Idioma: En Revista: Adv Sci (Weinh) Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Produtos Biológicos / Solventes Eutéticos Profundos Limite: Humans Idioma: En Revista: Adv Sci (Weinh) Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos