Your browser doesn't support javascript.
loading
Spontaneous Reduction of Transition Metal Ions by One Electron in Water Microdroplets and the Atmospheric Implications.
Yuan, Xu; Zhang, Dongmei; Liang, Chiyu; Zhang, Xinxing.
Afiliação
  • Yuan X; College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, Chi
  • Zhang D; College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, Chi
  • Liang C; College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, Chi
  • Zhang X; College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, Chi
J Am Chem Soc ; 145(5): 2800-2805, 2023 Feb 08.
Article em En | MEDLINE | ID: mdl-36705987
ABSTRACT
Freshman chemistry teaches that Fe3+ and Cu2+ ions are stable in water solutions, but their reduced forms, Fe2+ and Cu+, cannot exist in water as the major oxidation state due to the fast oxidation by O2 and/or disproportionation. Contrary to these well-known facts, significant fractions of dissolved Fe and Cu species exist in their reduced oxidation states in atmospheric water such as deliquesced aerosols, clouds, and fog droplets. Current knowledge attributes these phenomena to the stabilization of the lower oxidation states by the complexation of ligands and the various photochemical or thermal pathways that can reduce the higher oxidation states. In this study, by spraying the water solutions of transition metal ions into microdroplets, we show the results of the spontaneous reduction of ligated Fe(III) and Cu(II) species into Fe(II) and Cu(I) species, presenting a previously unknown source of reduced transition metal ions in atmospheric water. It is the spontaneously generated electrons in water microdroplets that are responsible for the reduction. Control experiments in the atmosphere and in a glove box filled with precisely controlled gaseous contents reveal that O2, CO2, and NO2 are the major competitors for the electrons, forming O2-, HCO2-, and NO2-, respectively. Taking these findings together, we opine that microdroplet chemistry might play significant but previously underestimated roles in atmospheric redox chemistry.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Am Chem Soc Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Am Chem Soc Ano de publicação: 2023 Tipo de documento: Article