Your browser doesn't support javascript.
loading
Maternal transfer of florfenicol impacts development and disrupts metabolic pathways in F1 offspring zebrafish by destroying mitochondria.
Zhang, Lin; Qiu, Jing; Li, Yameng; He, Linjuan; Mao, Mingcai; Wang, Tiancai; Pan, Yecan; Li, Zishu; Mu, Xiyan; Qian, Yongzhong.
Afiliação
  • Zhang L; Institute of Quality Standards and Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, Chin
  • Qiu J; Institute of Quality Standards and Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, Chin
  • Li Y; Institute of Quality Standards and Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, Chin
  • He L; Institute of Quality Standards and Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, Chin
  • Mao M; Institute of Quality Standards and Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, Chin
  • Wang T; Institute of Quality Standards and Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, Chin
  • Pan Y; Institute of Quality Standards and Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, Chin
  • Li Z; Institute of Quality Standards and Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, Chin
  • Mu X; Institute of Quality Standards and Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, Chin
  • Qian Y; Institute of Quality Standards and Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, Chin
Ecotoxicol Environ Saf ; 252: 114597, 2023 Mar 01.
Article em En | MEDLINE | ID: mdl-36739738
ABSTRACT
Maternal exposure to antibiotics existing in the environment is a predisposing factor for developmental malformation with metabolic disorders in offspring. In this study, female zebrafish (3 months) were exposed to 0.05 mg/L and 0.5 mg/L florfenicol (FF) for 28 days. After pairing and spawning with healthy male fish, F1 embryos were collected and developed to 5 d post-fertilization (dpf) in clear water. And the adverse effects on the F1 generation were examined thoroughly. The fecundity of F0 female fish and the hatchability, mortality, and body length of F1 larvae significantly decreased in the treatment group. Meanwhile, multi-malformation types were found in the exposure group, including delayed yolk sac absorption, lack of swim bladder, and spinal curvature. Metabolomic and transcriptomic results revealed alterations in metabolism with dysregulation in tricarboxylase acid cycle, amino acid metabolism, and disordered lipid metabolism with elevated levels of glycerophospholipid and sphingolipid. Accompanying these metabolic derangements, decreased levels of ATP and disordered oxidative-redox state were observed. These results were consistent with the damaged mitochondrial membrane potential and respiratory chain function, suggesting that the developmental toxicity and perturbed metabolic signaling in the F1 generation were related to the mitochondrial injury after exposing F0 female zebrafish to FF. Our findings highlighted the potential toxicity of FF to offspring generations even though they were not directly exposed to environmental contaminants.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Tianfenicol / Poluentes Químicos da Água Limite: Animals Idioma: En Revista: Ecotoxicol Environ Saf Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Tianfenicol / Poluentes Químicos da Água Limite: Animals Idioma: En Revista: Ecotoxicol Environ Saf Ano de publicação: 2023 Tipo de documento: Article