Your browser doesn't support javascript.
loading
Mechanism of strand displacement DNA synthesis by the coordinated activities of human mitochondrial DNA polymerase and SSB.
Plaza-G A, Ismael; Lemishko, Kateryna M; Crespo, Rodrigo; Truong, Thinh Q; Kaguni, Laurie S; Cao-García, Francisco J; Ciesielski, Grzegorz L; Ibarra, Borja.
Afiliação
  • Plaza-G A I; Instituto Madrileño de Estudios Avanzados en Nanociencia, IMDEA Nanociencia, Faraday 9, 28049 Madrid, Spain.
  • Lemishko KM; Instituto Madrileño de Estudios Avanzados en Nanociencia, IMDEA Nanociencia, Faraday 9, 28049 Madrid, Spain.
  • Crespo R; Departamento de Estructura de la Materia, Física Térmica y Electrónica, Universidad Complutense de Madrid, Pza. de Ciencias, 1, 28040 Madrid, Spain.
  • Truong TQ; Department of Chemistry, Auburn University at Montgomery, Montgomery, AL 36117, USA.
  • Kaguni LS; Department of Biochemistry and Molecular Biology and Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, MI 48823, USA.
  • Cao-García FJ; Departamento de Estructura de la Materia, Física Térmica y Electrónica, Universidad Complutense de Madrid, Pza. de Ciencias, 1, 28040 Madrid, Spain.
  • Ciesielski GL; Department of Chemistry, Auburn University at Montgomery, Montgomery, AL 36117, USA.
  • Ibarra B; Department of Biochemistry and Molecular Biology and Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, MI 48823, USA.
Nucleic Acids Res ; 51(4): 1750-1765, 2023 02 28.
Article em En | MEDLINE | ID: mdl-36744436
ABSTRACT
Many replicative DNA polymerases couple DNA replication and unwinding activities to perform strand displacement DNA synthesis, a critical ability for DNA metabolism. Strand displacement is tightly regulated by partner proteins, such as single-stranded DNA (ssDNA) binding proteins (SSBs) by a poorly understood mechanism. Here, we use single-molecule optical tweezers and biochemical assays to elucidate the molecular mechanism of strand displacement DNA synthesis by the human mitochondrial DNA polymerase, Polγ, and its modulation by cognate and noncognate SSBs. We show that Polγ exhibits a robust DNA unwinding mechanism, which entails lowering the energy barrier for unwinding of the first base pair of the DNA fork junction, by ∼55%. However, the polymerase cannot prevent the reannealing of the parental strands efficiently, which limits by ∼30-fold its strand displacement activity. We demonstrate that SSBs stimulate the Polγ strand displacement activity through several mechanisms. SSB binding energy to ssDNA additionally increases the destabilization energy at the DNA junction, by ∼25%. Furthermore, SSB interactions with the displaced ssDNA reduce the DNA fork reannealing pressure on Polγ, in turn promoting the productive polymerization state by ∼3-fold. These stimulatory effects are enhanced by species-specific functional interactions and have significant implications in the replication of the human mitochondrial DNA.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas de Ligação a DNA / Replicação do DNA / DNA Polimerase gama Limite: Humans Idioma: En Revista: Nucleic Acids Res Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Espanha

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas de Ligação a DNA / Replicação do DNA / DNA Polimerase gama Limite: Humans Idioma: En Revista: Nucleic Acids Res Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Espanha