Your browser doesn't support javascript.
loading
Inside-Out Oriented Choline Phosphate-Based Biomimetic Magnetic Nanomaterials for Precise Recognition and Analysis of C-Reactive Protein.
Chen, Zhiwei; Zhu, Chendi; Yang, Jiawen; Zhang, Mengyun; Yuan, Jiaming; Shen, Yuan; Zhou, Jingwei; Huang, Hao; Xu, Dongsheng; Crommen, Jacques; Jiang, Zhengjin; Wang, Qiqin.
Afiliação
  • Chen Z; Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development o
  • Zhu C; Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development o
  • Yang J; Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development o
  • Zhang M; Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development o
  • Yuan J; Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development o
  • Shen Y; Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development o
  • Zhou J; Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development o
  • Huang H; Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development o
  • Xu D; Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development o
  • Crommen J; Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development o
  • Jiang Z; Laboratory for the Analysis of Medicines, Department of Pharmaceutical Sciences, CIRM, University of Liege, CHU B36, B-4000 Liege, Belgium.
  • Wang Q; Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development o
Anal Chem ; 95(6): 3532-3543, 2023 02 14.
Article em En | MEDLINE | ID: mdl-36744576
ABSTRACT
Phospholipid-based materials exhibit great application potential in the fields of chemistry, biology, and pharmaceutical sciences. In this study, an inside-out oriented choline phosphate molecule, 2-{2-(methacryloyloxy)ethyldimethylammonium}ethyl n-butyl phosphate (MBP), was proposed and verified as a novel ligand of C-reactive protein (CRP) to enrich the functionality of these materials. Compared with phosphorylcholine (PC)-CRP interactions, the binding between MBP and CRP was not affected by the reverse position of phosphate and choline groups and even found more abundant binding sites. Thus, high-density MBP-grafted biomimetic magnetic nanomaterials (MBP-MNPs) were fabricated by reversible addition-fragmentation chain transfer polymerization based on thiol-ene click chemistry. The novel materials exhibited multifunctional applications for CRP including purification and ultrasensitive detection. On the one hand, higher specificity, recovery (90%), purity (95%), and static binding capacity (198.14 mg/g) for CRP were achieved on the novel materials in comparison with traditional PC-based materials, and the enriched CRP from patient serum can maintain its structural integrity and bioactivity. On the other hand, the CRP detection method combining G-quadruplex and thioflavin T developed with MBP-MNPs showed a lower detection limit (10 pM) and wider linear range (0.1-50 nM) than most PC-functionalized analytical platforms. Therefore, the inside-out oriented choline phosphate can not only precisely recognize CRP but also be combined with biomimetic nanomaterials to provide high application potential.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fosforilcolina / Proteína C-Reativa Limite: Humans Idioma: En Revista: Anal Chem Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fosforilcolina / Proteína C-Reativa Limite: Humans Idioma: En Revista: Anal Chem Ano de publicação: 2023 Tipo de documento: Article