Your browser doesn't support javascript.
loading
Mitochondrial damage in a Takotsubo syndrome-like mouse model mediated by activation of ß-adrenoceptor-Hippo signaling pathway.
Wu, Wei; Lu, Qun; Ma, Shan; Du, Jin-Chan; Huynh, Kevin; Duong, Thy; Pang, Zhang-Da; Donner, Daniel; Meikle, Peter J; Deng, Xiu-Ling; Du, Xiao-Jun.
Afiliação
  • Wu W; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University Health Science Center, Xi'an, China.
  • Lu Q; Department of Internal Medicine-Cardiovascular, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
  • Ma S; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University Health Science Center, Xi'an, China.
  • Du JC; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University Health Science Center, Xi'an, China.
  • Huynh K; Experimental Cardiology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.
  • Duong T; Experimental Cardiology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.
  • Pang ZD; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University Health Science Center, Xi'an, China.
  • Donner D; Experimental Cardiology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.
  • Meikle PJ; Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, Victoria, Australia.
  • Deng XL; Experimental Cardiology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.
  • Du XJ; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University Health Science Center, Xi'an, China.
Am J Physiol Heart Circ Physiol ; 324(4): H528-H541, 2023 04 01.
Article em En | MEDLINE | ID: mdl-36867446
ABSTRACT
Takotsubo syndrome (TTS) is characterized by short-term contractile dysfunction with its mechanism undefined. We showed that activation of cardiac Hippo pathway mediates mitochondrial dysfunction and that stimulation of ß-adrenoceptors (ßAR) activates Hippo pathway. Here, we investigated the role of ßAR-Hippo signaling in mediating mitochondrial dysfunction in isoproterenol (Iso)-induced TTS-like mouse model. Elderly postmenopausal female mice were administered with Iso (1.25 mg/kg/h for 23 h). Cardiac function was determined by serially echocardiography. At days 1 and 7 post-Iso exposure, mitochondrial ultrastructure and function were examined by electron microscopy and various assays. Alterations in cardiac Hippo pathway and effects of genetic inactivation of Hippo kinase (Mst1) on mitochondrial damage and dysfunction in the acute phase of TTS were investigated. Isoproterenol exposure induced acute increase in biomarkers of cardiac damage and ventricular contractile dysfunction and dilation. At day 1 post-Iso, we observed extensive abnormalities in mitochondrial ultrastructure, downregulation of mitochondrial marker proteins, and mitochondrial dysfunction evidenced by lower ATP content, increased lipid droplets, higher contents of lactate, and augmented reactive oxygen species (ROS). All changes were reversed by day 7. ßAR stimulation led to activation of cardiac Hippo pathway with enhanced expression of Hippo kinase Mst1 and inhibitory YAP phosphorylation, as well as reduced nuclear YAP-TEAD1 interaction. In mice with cardiac expression of inactive mutant Mst1 gene, acute mitochondrial damage and dysfunction were mitigated. Stimulation of cardiac ßAR activates Hippo pathway that mediates mitochondrial dysfunction with energy insufficiency and enhanced ROS, promoting acute but short-term ventricular dysfunction.NEW & NOTEWORTHY Takotsubo syndrome (TTS) is featured by activation of sympatho-ß-adrenoceptor (ßAR) system leading to acute loss of ventricular contractile performance. However, the molecular mechanism remains undefined. We demonstrated, in an isoproterenol-induced murine TTS-like model, extensive mitochondrial damage, metabolic dysfunction, and downregulated mitochondrial marker proteins, changes temporarily associated with cardiac dysfunction. Mechanistically, stimulation of ßAR activated Hippo signaling pathway and genetic inactivation of Mst1 kinase ameliorated mitochondrial damage and metabolic dysfunction at the acute phase of TTS.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Cardiomiopatia de Takotsubo / Via de Sinalização Hippo Limite: Animals Idioma: En Revista: Am J Physiol Heart Circ Physiol Assunto da revista: CARDIOLOGIA / FISIOLOGIA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Cardiomiopatia de Takotsubo / Via de Sinalização Hippo Limite: Animals Idioma: En Revista: Am J Physiol Heart Circ Physiol Assunto da revista: CARDIOLOGIA / FISIOLOGIA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China