Your browser doesn't support javascript.
loading
Multimodal Analysis of Light-Driven Water Oxidation in Nanoporous Block Copolymer Membranes.
Kund, Julian; Kruse, Jan-Hendrik; Gruber, Andreas; Trentin, Ivan; Langer, Marcel; Read, Clarissa; Neusser, Gregor; Blaimer, Dominik; Rupp, Ulrich; Streb, Carsten; Leopold, Kerstin; Schacher, Felix H; Kranz, Christine.
Afiliação
  • Kund J; Ulm University, Institute of Analytical and Bioanalytical Chemistry, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
  • Kruse JH; Friedrich-Schiller University Jena, Institute of Organic Chemistry and Macromolecular Chemistry, Lessingstraße 8, 07743, Jena, Germany.
  • Gruber A; Jena Center for Soft Matter (JCSM), Philosophenweg 7, 07743, Jena, Germany.
  • Trentin I; Ulm University, Institute of Analytical and Bioanalytical Chemistry, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
  • Langer M; Ulm University, Institute of Inorganic Chemistry, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
  • Read C; Ulm University, Institute of Inorganic Chemistry, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
  • Neusser G; Johannes Gutenberg University Mainz, Department of Chemistry, Duesbergweg 10-14, 55128, Mainz, Germany.
  • Blaimer D; Ulm University, Central Facility of Electron Microscopy, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
  • Rupp U; Ulm University, Institute of Analytical and Bioanalytical Chemistry, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
  • Streb C; Ulm University, Institute of Analytical and Bioanalytical Chemistry, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
  • Leopold K; Ulm University, Central Facility of Electron Microscopy, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
  • Schacher FH; Ulm University, Institute of Inorganic Chemistry, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
  • Kranz C; Johannes Gutenberg University Mainz, Department of Chemistry, Duesbergweg 10-14, 55128, Mainz, Germany.
Angew Chem Int Ed Engl ; 62(22): e202217196, 2023 May 22.
Article em En | MEDLINE | ID: mdl-36876900
ABSTRACT
Heterogeneous light-driven catalysis is a cornerstone of sustainable energy conversion. Most catalytic studies focus on bulk analyses of the hydrogen and oxygen evolved, which impede the correlation of matrix heterogeneities, molecular features, and bulk reactivity. Here, we report studies of a heterogenized catalyst/photosensitizer system using a polyoxometalate water oxidation catalyst and a model, molecular photosensitizer that were co-immobilized within a nanoporous block copolymer membrane. Via operando scanning electrochemical microscopy (SECM), light-induced oxygen evolution was determined using sodium peroxodisulfate (Na2 S2 O8 ) as sacrificial electron acceptor. Ex situ element analyses provided spatially resolved information on the local concentration and distribution of the molecular components. Infrared attenuated total reflection (IR-ATR) studies of the modified membranes showed no degradation of the water oxidation catalyst under the reported light-driven conditions.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Angew Chem Int Ed Engl Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Alemanha

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Angew Chem Int Ed Engl Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Alemanha