Your browser doesn't support javascript.
loading
Mesoscale functional connectivity in macaque visual areas.
Cai, Xingya; Xu, Haoran; Han, Chao; Li, Peichao; Wang, Jiayu; Zhang, Rui; Tang, Rendong; Fang, Chen; Yan, Kun; Song, Qianling; Liang, Chen; Lu, Haidong D.
Afiliação
  • Cai X; State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, No. 19 Xin Jie Kou Wai Street, Beijing 100875, China.
  • Xu H; State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, No. 19 Xin Jie Kou Wai Street, Beijing 100875, China.
  • Han C; State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, No. 19 Xin Jie Kou Wai Street, Beijing 100875, China.
  • Li P; State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, No. 19 Xin Jie Kou Wai Street, Beijing 100875, China.
  • Wang J; State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, No. 19 Xin Jie Kou Wai Street, Beijing 100875, China.
  • Zhang R; State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, No. 19 Xin Jie Kou Wai Street, Beijing 100875, China.
  • Tang R; State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, No. 19 Xin Jie Kou Wai Street, Beijing 100875, China.
  • Fang C; State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, No. 19 Xin Jie Kou Wai Street, Beijing 100875, China.
  • Yan K; State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, No. 19 Xin Jie Kou Wai Street, Beijing 100875, China.
  • Song Q; State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, No. 19 Xin Jie Kou Wai Street, Beijing 100875, China.
  • Liang C; State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, No. 19 Xin Jie Kou Wai Street, Beijing 100875, China.
  • Lu HD; State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, No. 19 Xin Jie Kou Wai Street, Beijing 100875, China. Electronic address: haidong@bnu.edu.cn.
Neuroimage ; 271: 120019, 2023 05 01.
Article em En | MEDLINE | ID: mdl-36914108
ABSTRACT
Studies of resting-state functional connectivity (rsFC) have provided rich insights into the structures and functions of the human brain. However, most rsFC studies have focused on large-scale brain connectivity. To explore rsFC at a finer scale, we used intrinsic signal optical imaging to image the ongoing activity of the anesthetized macaque visual cortex. Differential signals from functional domains were used to quantify network-specific fluctuations. In 30-60 min resting-state imaging, a series of coherent activation patterns were observed in all three visual areas we examined (V1, V2, and V4). These patterns matched the known functional maps (ocular dominance, orientation, color) obtained in visual stimulation conditions. These functional connectivity (FC) networks fluctuated independently over time and exhibited similar temporal characteristics. Coherent fluctuations, however, were observed from orientation FC networks in different areas and even across two hemispheres. Thus, FC in the macaque visual cortex was fully mapped both on a fine scale and over a long range. Hemodynamic signals can be used to explore mesoscale rsFC in a submillimeter resolution.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Descanso / Córtex Visual / Conectoma / Macaca fascicularis Limite: Animals Idioma: En Revista: Neuroimage Assunto da revista: DIAGNOSTICO POR IMAGEM Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Descanso / Córtex Visual / Conectoma / Macaca fascicularis Limite: Animals Idioma: En Revista: Neuroimage Assunto da revista: DIAGNOSTICO POR IMAGEM Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China