Your browser doesn't support javascript.
loading
Enhanced Mitochondria-SR Tethering Triggers Adaptive Cardiac Muscle Remodeling.
Nichtová, Zuzana; Fernandez-Sanz, Celia; De La Fuente, Sergio; Yuan, Yuexing; Hurst, Stephen; Lanvermann, Sebastian; Tsai, Hui-Ying; Weaver, David; Baggett, Ariele; Thompson, Christopher; Bouchet-Marquis, Cedric; Várnai, Péter; Seifert, Erin L; Dorn, Gerald W; Sheu, Shey-Shing; Csordás, György.
Afiliação
  • Nichtová Z; MitoCare, Pathology and Genomic Medicine (Z.N., S.H., D.W., A.B., E.L.S., G.C.), Thomas Jefferson University, Philadelphia, PA.
  • Fernandez-Sanz C; Center for Translational Medicine (C.F.-S., S.D.L.F., Y.Y., S.L., H.-Y.T., S.-S.S.), Thomas Jefferson University, Philadelphia, PA.
  • De La Fuente S; Center for Translational Medicine (C.F.-S., S.D.L.F., Y.Y., S.L., H.-Y.T., S.-S.S.), Thomas Jefferson University, Philadelphia, PA.
  • Yuan Y; Center for Translational Medicine (C.F.-S., S.D.L.F., Y.Y., S.L., H.-Y.T., S.-S.S.), Thomas Jefferson University, Philadelphia, PA.
  • Hurst S; MitoCare, Pathology and Genomic Medicine (Z.N., S.H., D.W., A.B., E.L.S., G.C.), Thomas Jefferson University, Philadelphia, PA.
  • Lanvermann S; Center for Translational Medicine (C.F.-S., S.D.L.F., Y.Y., S.L., H.-Y.T., S.-S.S.), Thomas Jefferson University, Philadelphia, PA.
  • Tsai HY; Center for Translational Medicine (C.F.-S., S.D.L.F., Y.Y., S.L., H.-Y.T., S.-S.S.), Thomas Jefferson University, Philadelphia, PA.
  • Weaver D; MitoCare, Pathology and Genomic Medicine (Z.N., S.H., D.W., A.B., E.L.S., G.C.), Thomas Jefferson University, Philadelphia, PA.
  • Baggett A; MitoCare, Pathology and Genomic Medicine (Z.N., S.H., D.W., A.B., E.L.S., G.C.), Thomas Jefferson University, Philadelphia, PA.
  • Thompson C; Thermo Fisher Scientific, Hillsboro, OR (C.T., C.B.-M.).
  • Bouchet-Marquis C; Thermo Fisher Scientific, Hillsboro, OR (C.T., C.B.-M.).
  • Várnai P; Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary (P.V.).
  • Seifert EL; MitoCare, Pathology and Genomic Medicine (Z.N., S.H., D.W., A.B., E.L.S., G.C.), Thomas Jefferson University, Philadelphia, PA.
  • Dorn GW; Center for Pharmacogenomics, John T. Milliken Department of Medicine, Washington University School of Medicine, St Louis, MO (G.W.D.).
  • Sheu SS; Center for Translational Medicine (C.F.-S., S.D.L.F., Y.Y., S.L., H.-Y.T., S.-S.S.), Thomas Jefferson University, Philadelphia, PA.
  • Csordás G; MitoCare, Pathology and Genomic Medicine (Z.N., S.H., D.W., A.B., E.L.S., G.C.), Thomas Jefferson University, Philadelphia, PA.
Circ Res ; 132(11): e171-e187, 2023 05 26.
Article em En | MEDLINE | ID: mdl-37057625
ABSTRACT

BACKGROUND:

Cardiac contractile function requires high energy from mitochondria, and Ca2+ from the sarcoplasmic reticulum (SR). Via local Ca2+ transfer at close mitochondria-SR contacts, cardiac excitation feedforward regulates mitochondrial ATP production to match surges in demand (excitation-bioenergetics coupling). However, pathological stresses may cause mitochondrial Ca2+ overload, excessive reactive oxygen species production and permeability transition, risking homeostatic collapse and myocyte loss. Excitation-bioenergetics coupling involves mitochondria-SR tethers but the role of tethering in cardiac physiology/pathology is debated. Endogenous tether proteins are multifunctional; therefore, nonselective targets to scrutinize interorganelle linkage. Here, we assessed the physiological/pathological relevance of selective chronic enhancement of cardiac mitochondria-SR tethering.

METHODS:

We introduced to mice a cardiac muscle-specific engineered tether (linker) transgene with a fluorescent protein core and deployed 2D/3D electron microscopy, biochemical approaches, fluorescence imaging, in vivo and ex vivo cardiac performance monitoring and stress challenges to characterize the linker phenotype.

RESULTS:

Expressed in the mature cardiomyocytes, the linker expanded and tightened individual mitochondria-junctional SR contacts; but also evoked a marked remodeling with large dense mitochondrial clusters that excluded dyads. Yet, excitation-bioenergetics coupling remained well-preserved, likely due to more longitudinal mitochondria-dyad contacts and nanotunnelling between mitochondria exposed to junctional SR and those sealed away from junctional SR. Remarkably, the linker decreased female vulnerability to acute massive ß-adrenergic stress. It also reduced myocyte death and mitochondrial calcium-overload-associated myocardial impairment in ex vivo ischemia/reperfusion injury.

CONCLUSIONS:

We propose that mitochondria-SR/endoplasmic reticulum contacts operate at a structural optimum. Although acute changes in tethering may cause dysfunction, upon chronic enhancement of contacts from early life, adaptive remodeling of the organelles shifts the system to a new, stable structural optimum. This remodeling balances the individually enhanced mitochondrion-junctional SR crosstalk and excitation-bioenergetics coupling, by increasing the connected mitochondrial pool and, presumably, Ca2+/reactive oxygen species capacity, which then improves the resilience to stresses associated with dysregulated hyperactive Ca2+ signaling.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Retículo Sarcoplasmático / Sinalização do Cálcio Limite: Animals Idioma: En Revista: Circ Res Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Panamá

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Retículo Sarcoplasmático / Sinalização do Cálcio Limite: Animals Idioma: En Revista: Circ Res Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Panamá