Your browser doesn't support javascript.
loading
Real-Time Evaluation of Time-Domain Pulse Rate Variability Parameters in Different Postures and Breathing Patterns Using Wireless Photoplethysmography Sensor: Towards Remote Healthcare in Low-Resource Communities.
Pineda-Alpizar, Felipe; Arriola-Valverde, Sergio; Vado-Chacón, Mitzy; Sossa-Rojas, Diego; Liu, Haipeng; Zheng, Dingchang.
Afiliação
  • Pineda-Alpizar F; Industrial Design Engineering Department, Costa Rica Institute of Technology, Cartago 7050, Costa Rica.
  • Arriola-Valverde S; Electronics Engineering Department, Costa Rica Institute of Technology, Cartago 7050, Costa Rica.
  • Vado-Chacón M; Respiratory Therapy Department, Santa Paula University, San Jose 2633, Costa Rica.
  • Sossa-Rojas D; Respiratory Therapy Department, Santa Paula University, San Jose 2633, Costa Rica.
  • Liu H; Center of Intelligent Healthcare, Coventry University, Coventry CV1 5FB, UK.
  • Zheng D; Center of Intelligent Healthcare, Coventry University, Coventry CV1 5FB, UK.
Sensors (Basel) ; 23(9)2023 Apr 24.
Article em En | MEDLINE | ID: mdl-37177450
ABSTRACT
Photoplethysmography (PPG) signals have been widely used in evaluating cardiovascular biomarkers, however, there is a lack of in-depth understanding of the remote usage of this technology and its viability for underdeveloped countries. This study aims to quantitatively evaluate the performance of a low-cost wireless PPG device in detecting ultra-short-term time-domain pulse rate variability (PRV) parameters in different postures and breathing patterns. A total of 30 healthy subjects were recruited. ECG and PPG signals were simultaneously recorded in 3 min using miniaturized wearable sensors. Four heart rate variability (HRV) and PRV parameters were extracted from ECG and PPG signals, respectively, and compared using analysis of variance (ANOVA) or Scheirer-Ray-Hare test with post hoc analysis. In addition, the data loss was calculated as the percentage of missing sampling points. Posture did not present statistical differences across the PRV parameters but a statistical difference between indicators was found. Strong variation was found for the RMSSD indicator in the standing posture. The sitting position in both breathing patterns demonstrated the lowest data loss (1.0 ± 0.6 and 1.0 ± 0.7) and the lowest percentage of different factors for all indicators. The usage of commercial PPG and BLE devices can allow the reliable extraction of the PPG signal and PRV indicators in real time.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Postura / Fotopletismografia Tipo de estudo: Evaluation_studies Limite: Humans Idioma: En Revista: Sensors (Basel) Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Costa Rica

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Postura / Fotopletismografia Tipo de estudo: Evaluation_studies Limite: Humans Idioma: En Revista: Sensors (Basel) Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Costa Rica