Your browser doesn't support javascript.
loading
The Alkylamine Stimulant 1,3-Dimethylamylamine Exhibits Substrate-Like Regulation of Dopamine Transporter Function and Localization.
Small, Cassandra; Cheng, Mary Hongying; Belay, Saron S; Bulloch, Sarah L; Zimmerman, Brooke; Sorkin, Alexander; Block, Ethan R.
Afiliação
  • Small C; Science Department, Chatham University, Pittsburgh, Pennsylvania (C.S., S.S.B., S.L.B., B.Z., E.R.B.) and Departments of Computational and Systems Biology (M.H.C.) and Cell Biology (A.S.), School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.
  • Cheng MH; Science Department, Chatham University, Pittsburgh, Pennsylvania (C.S., S.S.B., S.L.B., B.Z., E.R.B.) and Departments of Computational and Systems Biology (M.H.C.) and Cell Biology (A.S.), School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.
  • Belay SS; Science Department, Chatham University, Pittsburgh, Pennsylvania (C.S., S.S.B., S.L.B., B.Z., E.R.B.) and Departments of Computational and Systems Biology (M.H.C.) and Cell Biology (A.S.), School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.
  • Bulloch SL; Science Department, Chatham University, Pittsburgh, Pennsylvania (C.S., S.S.B., S.L.B., B.Z., E.R.B.) and Departments of Computational and Systems Biology (M.H.C.) and Cell Biology (A.S.), School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.
  • Zimmerman B; Science Department, Chatham University, Pittsburgh, Pennsylvania (C.S., S.S.B., S.L.B., B.Z., E.R.B.) and Departments of Computational and Systems Biology (M.H.C.) and Cell Biology (A.S.), School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.
  • Sorkin A; Science Department, Chatham University, Pittsburgh, Pennsylvania (C.S., S.S.B., S.L.B., B.Z., E.R.B.) and Departments of Computational and Systems Biology (M.H.C.) and Cell Biology (A.S.), School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.
  • Block ER; Science Department, Chatham University, Pittsburgh, Pennsylvania (C.S., S.S.B., S.L.B., B.Z., E.R.B.) and Departments of Computational and Systems Biology (M.H.C.) and Cell Biology (A.S.), School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania eblock@chatham.edu.
J Pharmacol Exp Ther ; 386(2): 266-273, 2023 08.
Article em En | MEDLINE | ID: mdl-37348963
ABSTRACT
The alkylamine stimulant 1,3-dimethylamylamine (DMAA) is used nonmedically as an appetite suppressant and exercise performance enhancer despite adverse cardiovascular effects that have limited its legal status. There is scant research describing the mechanism of action of DMAA, making it difficult to gauge risks or therapeutic potential. An important molecular target of structurally related phenethylamines, such as amphetamine, for regulating mood, cognition, movement, and the development of substance use disorder is the dopamine transporter, which limits the range and magnitude of dopamine signaling via reuptake from the extracellular space. The present studies were therefore initiated to characterize the effects of DMAA on dopamine transporter function. Specifically, we tested the hypothesis that DMAA exhibits substrate-like effects on dopamine transporter function and trafficking. In transport assays in human embryonic kidney cells, DMAA inhibited dopamine uptake by the human dopamine transporter in a competitive manner. Docking analysis and molecular dynamics simulations supported these findings, revealing that DMAA binds to the S1 substrate binding site and induces a conformational change from outward-facing open to outward-facing closed states, similar to the known substrates. Further supporting substrate-like effects of DMAA, the drug stimulated dopamine transporter endocytosis in a heterologous expression system via cocaine- and protein kinase A-sensitive mechanisms, mirroring findings with amphetamine. Together, these data indicate that DMAA elicits neurologic effects by binding to and regulating function of the dopamine transporter. Furthermore, pharmacologic distinctions from amphetamine reveal structural determinants for regulating transporter conformation and add mechanistic insight for the regulation of dopamine transporter endocytosis. SIGNIFICANCE STATEMENT The alkylamine stimulant 1,3-dimethylamylamine (DMAA) is used as an appetite suppressant and athletic performance enhancer and is structurally similar to amphetamine, but there is scant research describing its mechanism of action. Characterizing the effects of DMAA on dopamine transporter function supports evaluation of potential risks and therapeutic potential while also revealing mechanistic details of dynamic transporter-substrate interactions.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Depressores do Apetite / Cocaína Limite: Humans Idioma: En Revista: J Pharmacol Exp Ther Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Depressores do Apetite / Cocaína Limite: Humans Idioma: En Revista: J Pharmacol Exp Ther Ano de publicação: 2023 Tipo de documento: Article