Your browser doesn't support javascript.
loading
Kernelizing: A way to increase accuracy in trilinear decomposition analysis of multiexponential signals.
Gómez-Sánchez, Adrián; Vitale, Raffaele; Devos, Olivier; de Juan, Anna; Ruckebusch, Cyril.
Afiliação
  • Gómez-Sánchez A; Chemometrics Group, Universitat de Barcelona, Diagonal, 645, 08028, Barcelona, Spain; Univ. Lille, CNRS, UMR 8516, LASIRe, Laboratoire Avancé de Spectroscopie pour Les Intéractions La Réactivité et L'Environnement, F-59000, Lille, France. Electronic address: agomezsa29@alumnes.ub.edu.
  • Vitale R; Univ. Lille, CNRS, UMR 8516, LASIRe, Laboratoire Avancé de Spectroscopie pour Les Intéractions La Réactivité et L'Environnement, F-59000, Lille, France.
  • Devos O; Univ. Lille, CNRS, UMR 8516, LASIRe, Laboratoire Avancé de Spectroscopie pour Les Intéractions La Réactivité et L'Environnement, F-59000, Lille, France.
  • de Juan A; Chemometrics Group, Universitat de Barcelona, Diagonal, 645, 08028, Barcelona, Spain.
  • Ruckebusch C; Univ. Lille, CNRS, UMR 8516, LASIRe, Laboratoire Avancé de Spectroscopie pour Les Intéractions La Réactivité et L'Environnement, F-59000, Lille, France.
Anal Chim Acta ; 1273: 341545, 2023 Sep 08.
Article em En | MEDLINE | ID: mdl-37423671
ABSTRACT
The unmixing of multiexponential decay signals into monoexponential components using soft modelling approaches is a challenging task due to the strong correlation and complete window overlap of the profiles. To solve this problem, slicing methodologies, such as PowerSlicing, tensorize the original data matrix into a three-way data array that can be decomposed based on trilinear models providing unique solutions. Satisfactory results have been reported for different types of data, e.g., nuclear magnetic resonance or time-resolved fluorescence spectra. However, when decay signals are described by only a few sampling (time) points, a significant degradation of the results can be observed in terms of accuracy and precision of the recovered profiles. In this work, we propose a methodology called Kernelizing that provides a more efficient way to tensorize data matrices of multiexponential decays. Kernelizing relies on the invariance of exponential decays, i.e., when convolving a monoexponential decaying function with any positive function of finite width (hereafter called "kernel"), the shape of the decay (determined by the characteristic decay constant) remains unchanged and only the preexponential factor varies. The way preexponential factors are affected across the sample and time modes is linear, and it only depends on the kernel used. Thus, using kernels of different shapes, a set of convolved curves can be obtained for every sample, and a three-way data array generated, for which the modes are sample, time and kernelizing effect. This three-way array can be afterwards analyzed by a trilinear decomposition method, such as PARAFAC-ALS, to resolve the underlying monoexponential profiles. To validate this new approach and assess its performance, we applied Kernelizing to simulated datasets, real time-resolved fluorescence spectra collected on mixtures of fluorophores and fluorescence-lifetime imaging microscopy data. When the measured multiexponential decays feature few sampling points (down to fifteen), more accurate trilinear model estimates are obtained than when using slicing methodologies.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Anal Chim Acta Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Anal Chim Acta Ano de publicação: 2023 Tipo de documento: Article