Your browser doesn't support javascript.
loading
Reactivity of Acrylamides Causes Cytotoxicity and Activates Oxidative Stress Response.
Huchthausen, Julia; Escher, Beate I; Grasse, Nico; König, Maria; Beil, Stephan; Henneberger, Luise.
Afiliação
  • Huchthausen J; Department of Cell Toxicology, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany.
  • Escher BI; Department of Cell Toxicology, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany.
  • Grasse N; Department of Geosciences, Eberhard Karls University Tübingen, Environmental Toxicology, 72076 Tübingen, Germany.
  • König M; Department of Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany.
  • Beil S; Department of Cell Toxicology, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany.
  • Henneberger L; Institute of Water Chemistry, Technische Universität Dresden, 01069 Dresden, Germany.
Chem Res Toxicol ; 36(8): 1374-1385, 2023 08 21.
Article em En | MEDLINE | ID: mdl-37531411
ABSTRACT
Acrylamides are widely used industrial chemicals that cause adverse effects in humans or animals, such as carcinogenicity or neurotoxicity. The excess toxicity of these reactive electrophilic chemicals is especially interesting, as it is mostly triggered by covalent reactions with biological nucleophiles, such as DNA bases, proteins, or peptides. The cytotoxicity and activation of oxidative stress response of 10 (meth)acrylamides measured in three reporter gene cell lines occurred at similar concentrations. Most acrylamides exhibited high excess toxicity, while methacrylamides acted as baseline toxicants. The (meth)acrylamides showed no reactivity toward the hard biological nucleophile 2-deoxyguanosine (2DG) within 24 h, and only acrylamides reacted with the soft nucleophile glutathione (GSH). Second-order degradation rate constants (kGSH) were measured for all acrylamides with N,N'-methylenebis(acrylamide) (NMBA) showing the highest kGSH (134.800 M-1 h-1) and N,N-diethylacrylamide (NDA) the lowest kGSH (2.574 M-1 h-1). Liquid chromatography coupled to high-resolution mass spectrometry was used to confirm the GSH conjugates of the acrylamides with a double conjugate formed for NMBA. The differences in reactivity between acrylamides and methacrylamides could be explained by the charge density of the carbon atoms because the electron-donating inductive effect of the methyl group of the methacrylamides lowered their electrophilicity and thus their reactivity. The differences in reactivity within the group of acrylamides could be explained by the energy of the lowest unoccupied molecular orbital and steric hindrance. Cytotoxicity and activation of oxidative stress response were linearly correlated with the second-order reaction rate constants of the acrylamides with GSH. The reaction of the acrylamides with GSH is hence not only a detoxification mechanism but also leads to disturbances of the redox balance, making the cells more vulnerable to reactive oxygen species. The reactivity of acrylamides explained the oxidative stress response and cytotoxicity in the cells, and the lack of reactivity of the methacrylamides led to baseline toxicity.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Acrilamidas / Acrilamida Tipo de estudo: Etiology_studies Limite: Animals / Humans Idioma: En Revista: Chem Res Toxicol Assunto da revista: TOXICOLOGIA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Alemanha

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Acrilamidas / Acrilamida Tipo de estudo: Etiology_studies Limite: Animals / Humans Idioma: En Revista: Chem Res Toxicol Assunto da revista: TOXICOLOGIA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Alemanha