Your browser doesn't support javascript.
loading
Nanosized core-shell (NiFe2O4/TiO2) heterostructure for enhanced photodegradation against polycyclic aromatic hydrocarbons.
Alomairy, Sultan; Gnanasekaran, Lalitha; Rajendran, Saravanan; Alsanie, Walaa F.
Afiliação
  • Alomairy S; Department of Physics, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia. Electronic address: s.alomairy@tu.edu.sa.
  • Gnanasekaran L; Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile; University Centre for Research & Development, Department of Mechanical Engineering, Chandigarh University, Mohali, Punjab, 140413, India. Electronic address: lalitha
  • Rajendran S; Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile. Electronic address: saravanan3.raj@gmail.com.
  • Alsanie WF; Department of Clinical Laboratorie, The Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia; Centre of Biomedical Sciences Research (CBSR), Deanship of ScientificResearch, Taif University, Taif, Saudi Arabia.
Chemosphere ; 343: 140274, 2023 Dec.
Article em En | MEDLINE | ID: mdl-37758072
ABSTRACT
The global level of attention has been raised for photocatalytic pollutant removal technologies for degrading organic pollutants because of rising concerns about their toxicity. In this study, NiFe2O4/TiO2 core shells and pure samples of NiFe2O4 and TiO2 were synthesized using the sol-gel process and used to degrade naphthalene which is one among the polycyclic aromatic hydrocarbons (PAHs) pollutant. The synthesized materials were evaluated using a variety of analytical techniques, and the typical NiFe2O4/TiO2 core-shell results showed good purity and a lack of other impurity structures. Through morphological characterization, the core-shell structure of NiFe2O4/TiO2 has been established. However, the activity of visible light degradation was boosted by the generation of hydroxyl radicals after the electron-hole pair was delayed. Additionally, a lower band gap in NiFe2O4/TiO2 than in pure materials promotes photocatalytic activity. Similarly, photocatalytic naphthalene elimination by the core-shell achieved 67% efficiency after 150 min of visible light exposure. Furthermore, the produced core-shell has a high magnetic property, making separation from the photo-irradiated solutions easier; as a result, recycling was likely successful up to three cycles. The photocatalytic mechanism of the NiFe2O4/TiO2 composite was proposed. This research could also be applied to the degradation of other polycyclic aromatic hydrocarbon contaminants.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Chemosphere Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Chemosphere Ano de publicação: 2023 Tipo de documento: Article