Your browser doesn't support javascript.
loading
Structural Optimization Design of Dual Robot Gripper Unloading Device Based on Intelligent Optimization Algorithms and Generative Design.
Jia, Jiguang; Sun, Xuan; Liu, Ting; Tang, Jiazhi; Wang, Jiabing; Hu, Xianxuan.
Afiliação
  • Jia J; College of Mechanic and Control Engineering, Guilin University of Technology, Guilin 541004, China.
  • Sun X; Key Laboratory of Advanced Manufacturing and Automation Technology, Education Department of Guangxi Zhuang Autonomous Region, Guilin University of Technology, Guilin 541006, China.
  • Liu T; College of Mechanic and Control Engineering, Guilin University of Technology, Guilin 541004, China.
  • Tang J; Key Laboratory of Advanced Manufacturing and Automation Technology, Education Department of Guangxi Zhuang Autonomous Region, Guilin University of Technology, Guilin 541006, China.
  • Wang J; College of Mechanic and Control Engineering, Guilin University of Technology, Guilin 541004, China.
  • Hu X; Key Laboratory of Advanced Manufacturing and Automation Technology, Education Department of Guangxi Zhuang Autonomous Region, Guilin University of Technology, Guilin 541006, China.
Sensors (Basel) ; 23(19)2023 Oct 07.
Article em En | MEDLINE | ID: mdl-37837126
ABSTRACT
The main aim of this paper is to explore new approaches to structural design and to solve the problem of lightweight design of structures involving multivariable and multi-objectives. An integrated optimization design methodology is proposed by combining intelligent optimization algorithms with generative design. Firstly, the meta-model is established to explore the relationship between design variables, quality, strain energy, and inherent energy. Then, employing the Non-dominated Sorting Genetic Algorithm III (NSGA-III), the optimal frameworks of the structure are sought within the entire design space. Immediately following, a structure is rebuilt based on the principle of cooperative equilibrium. Furthermore, the rebuilt structure is integrated into a generative design, enabling automatic iteration by controlling the initial parameter set. The quality and rigidity of the structure under different reconstructions are evaluated, resulting in solution generation for structural optimization. Finally, the optimal structure obtained is validated. Research outcomes indicate that the quality of structures generated through the comprehensive optimization method is reduced by 27%, and the inherent energy increases by 0.95 times. Moreover, the overall structural deformation is less than 0.003 mm, with a maximum stress of 3.2 MPa-significantly lower than the yield strength and meeting industrial usage standards. A qualitative study and analysis of the experimental results substantiate the superiority of the proposed methodology for optimized structural design.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Sensors (Basel) Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Sensors (Basel) Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China