Your browser doesn't support javascript.
loading
Mutual-information based optimal experimental design for hyperpolarized [Formula: see text]C-pyruvate MRI.
Jha, Prashant K; Walker, Christopher; Mitchell, Drew; Oden, J Tinsley; Schellingerhout, Dawid; Bankson, James A; Fuentes, David T.
Afiliação
  • Jha PK; Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX 78712 USA.
  • Walker C; Department of Imaging Physics, MD Anderson Cancer Center, Houston, TX 77320 USA.
  • Mitchell D; Department of Imaging Physics, MD Anderson Cancer Center, Houston, TX 77320 USA.
  • Oden JT; Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX 78712 USA.
  • Schellingerhout D; Department of Imaging Physics, MD Anderson Cancer Center, Houston, TX 77320 USA.
  • Bankson JA; Department of Imaging Physics, MD Anderson Cancer Center, Houston, TX 77320 USA.
  • Fuentes DT; Department of Imaging Physics, MD Anderson Cancer Center, Houston, TX 77320 USA.
Sci Rep ; 13(1): 18047, 2023 Oct 23.
Article em En | MEDLINE | ID: mdl-37872226
ABSTRACT
A key parameter of interest recovered from hyperpolarized (HP) MRI measurements is the apparent pyruvate-to-lactate exchange rate, [Formula see text], for measuring tumor metabolism. This manuscript presents an information-theory-based optimal experimental design approach that minimizes the uncertainty in the rate parameter, [Formula see text], recovered from HP-MRI measurements. Mutual information is employed to measure the information content of the HP measurements with respect to the first-order exchange kinetics of the pyruvate conversion to lactate. Flip angles of the pulse sequence acquisition are optimized with respect to the mutual information. A time-varying flip angle scheme leads to a higher parameter optimization that can further improve the quantitative value of mutual information over a constant flip angle scheme. However, the constant flip angle scheme, 35 and 28 degrees for pyruvate and lactate measurements, leads to an accuracy and precision comparable to the variable flip angle schemes obtained from our method. Combining the comparable performance and practical implementation, optimized pyruvate and lactate flip angles of 35 and 28 degrees, respectively, are recommended.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Sci Rep Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Sci Rep Ano de publicação: 2023 Tipo de documento: Article