Your browser doesn't support javascript.
loading
Principal Component Analysis and t-Distributed Stochastic Neighbor Embedding Analysis in the Study of Quantum Approximate Optimization Algorithm Entangled and Non-Entangled Mixing Operators.
Sarmina, Brian García; Sun, Guo-Hua; Dong, Shi-Hai.
Afiliação
  • Sarmina BG; Centro de Investigación en Computación, Instituto Politécnico Nacional, Mexico City 07738, Mexico.
  • Sun GH; Centro de Investigación en Computación, Instituto Politécnico Nacional, Mexico City 07738, Mexico.
  • Dong SH; Centro de Investigación en Computación, Instituto Politécnico Nacional, Mexico City 07738, Mexico.
Entropy (Basel) ; 25(11)2023 Oct 30.
Article em En | MEDLINE | ID: mdl-37998191
ABSTRACT
In this paper, we employ PCA and t-SNE analyses to gain deeper insights into the behavior of entangled and non-entangled mixing operators within the Quantum Approximate Optimization Algorithm (QAOA) at various depths. We utilize a dataset containing optimized parameters generated for max-cut problems with cyclic and complete configurations. This dataset encompasses the resulting RZ, RX, and RY parameters for QAOA models at different depths (1L, 2L, and 3L) with or without an entanglement stage within the mixing operator. Our findings reveal distinct behaviors when processing the different parameters with PCA and t-SNE. Specifically, most of the entangled QAOA models demonstrate an enhanced capacity to preserve information in the mapping, along with a greater level of correlated information detectable by PCA and t-SNE. Analyzing the overall mapping results, a clear differentiation emerges between entangled and non-entangled models. This distinction is quantified numerically through explained variance in PCA and Kullback-Leibler divergence (post-optimization) in t-SNE. These disparities are also visually evident in the mapping data produced by both methods, with certain entangled QAOA models displaying clustering effects in both visualization techniques.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Entropy (Basel) Ano de publicação: 2023 Tipo de documento: Article País de afiliação: México

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Entropy (Basel) Ano de publicação: 2023 Tipo de documento: Article País de afiliação: México