Your browser doesn't support javascript.
loading
Molluscan Genomes Reveal Extensive Differences in Photopigment Evolution Across the Phylum.
McElroy, Kyle E; Audino, Jorge A; Serb, Jeanne M.
Afiliação
  • McElroy KE; Ecology, Evolutionary, and Organismal Biology, Iowa State University, Ames, IA, USA.
  • Audino JA; Ecology, Evolutionary, and Organismal Biology, Iowa State University, Ames, IA, USA.
  • Serb JM; Department of Zoology, University of São Paulo, São Paulo, Brazil.
Mol Biol Evol ; 40(12)2023 Dec 01.
Article em En | MEDLINE | ID: mdl-38039155
ABSTRACT
In animals, opsins and cryptochromes are major protein families that transduce light signals when bound to light-absorbing chromophores. Opsins are involved in various light-dependent processes, like vision, and have been co-opted for light-independent sensory modalities. Cryptochromes are important photoreceptors in animals, generally regulating circadian rhythm, they belong to a larger protein family with photolyases, which repair UV-induced DNA damage. Mollusks are great animals to explore questions about light sensing as eyes have evolved multiple times across, and within, taxonomic classes. We used molluscan genome assemblies from 80 species to predict protein sequences and examine gene family evolution using phylogenetic approaches. We found extensive opsin family expansion and contraction, particularly in bivalve xenopsins and gastropod Go-opsins, while other opsins, like retinochrome, rarely duplicate. Bivalve and gastropod lineages exhibit fluctuations in opsin repertoire, with cephalopods having the fewest number of opsins and loss of at least 2 major opsin types. Interestingly, opsin expansions are not limited to eyed species, and the highest opsin content was seen in eyeless bivalves. The dynamic nature of opsin evolution is quite contrary to the general lack of diversification in mollusk cryptochromes, though some taxa, including cephalopods and terrestrial gastropods, have reduced repertoires of both protein families. We also found complete loss of opsins and cryptochromes in multiple, but not all, deep-sea species. These results help set the stage for connecting genomic changes, including opsin family expansion and contraction, with differences in environmental, and biological features across Mollusca.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Evolução Molecular / Criptocromos Limite: Animals Idioma: En Revista: Mol Biol Evol Assunto da revista: BIOLOGIA MOLECULAR Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Evolução Molecular / Criptocromos Limite: Animals Idioma: En Revista: Mol Biol Evol Assunto da revista: BIOLOGIA MOLECULAR Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos