Your browser doesn't support javascript.
loading
MYC2 regulates stomatal density and water use efficiency via targeting EPF2/EPFL4/EPFL9 in poplar.
Xia, Yufei; Jiang, Shenxiu; Wu, Wenqi; Du, Kang; Kang, Xiangyang.
Afiliação
  • Xia Y; State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
  • Jiang S; State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
  • Wu W; Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
  • Du K; State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
  • Kang X; State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
New Phytol ; 241(6): 2506-2522, 2024 Mar.
Article em En | MEDLINE | ID: mdl-38258389
ABSTRACT
Although polyploid plants have lower stomatal density than their diploid counterparts, the molecular mechanisms underlying this difference remain elusive. Here, we constructed a network based on the triploid poplar transcriptome data and triple-gene mutual interaction algorithm and found that PpnMYC2 was related to stomatal development-related genes PpnEPF2, PpnEPFL4, and PpnEPFL9. The interactions between PpnMYC2 and PagJAZs were experimentally validated. PpnMYC2-overexpressing poplar and Arabidopsis thaliana had reduced stomatal density. Poplar overexpressing PpnMYC2 had higher water use efficiency and drought resistance. RNA-sequencing data of poplars overexpressing PpnMYC2 showed that PpnMYC2 promotes the expression of stomatal density inhibitors PagEPF2 and PagEPFL4 and inhibits the expression of the stomatal density-positive regulator PagEPFL9. Yeast one-hybrid system, electrophoretic mobility shift assay, ChIP-qPCR, and dual-luciferase assay were employed to substantiate that PpnMYC2 directly regulated PagEPF2, PagEPFL4, and PagEPFL9. PpnMYC2, PpnEPF2, and PpnEPFL4 were significantly upregulated, whereas PpnEPFL9 was downregulated during stomatal formation in triploid poplar. Our results are of great significance for revealing the regulation mechanism of plant stomatal occurrence and polyploid stomatal density, as well as reducing stomatal density and improving plant water use efficiency by overexpressing MYC2.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Arabidopsis / Proteínas de Arabidopsis / Populus Idioma: En Revista: New Phytol Assunto da revista: BOTANICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Arabidopsis / Proteínas de Arabidopsis / Populus Idioma: En Revista: New Phytol Assunto da revista: BOTANICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China