Your browser doesn't support javascript.
loading
Notoginsenoside R1 attenuates bupivacaine induced neurotoxicity by activating Jak1/Stat3/Mcl1 pathway.
Yang, Yu; Wu, Jiwen; Feng, Shicheng; Yu, Hao; Liu, Chuanxin; Wang, Shuai.
Afiliação
  • Yang Y; School of Mental Health, Jining Medical University, Jining 272013, China; Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Jining Medical University, Jining, Shandong, China.
  • Wu J; School of Mental Health, Jining Medical University, Jining 272013, China; Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Jining Medical University, Jining, Shandong, China.
  • Feng S; School of Mental Health, Jining Medical University, Jining 272013, China; Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Jining Medical University, Jining, Shandong, China.
  • Yu H; School of Mental Health, Jining Medical University, Jining 272013, China; Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Jining Medical University, Jining, Shandong, China.
  • Liu C; School of Mental Health, Jining Medical University, Jining 272013, China; Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Jining Medical University, Jining, Shandong, China; Department of Psychiatry, Affiliated Hospital of Jining Me
  • Wang S; School of Mental Health, Jining Medical University, Jining 272013, China; Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Jining Medical University, Jining, Shandong, China. Electronic address: wangshuaijs@mail.jnmc.edu.cn.
Toxicology ; 503: 153740, 2024 Mar.
Article em En | MEDLINE | ID: mdl-38316350
ABSTRACT
Bupivacaine, a common amide local anesthetic, can provide effective analgesia or pain relief but can also cause neurotoxicity, which remains a mounting concern in clinic and animal care. However, the precise underlying mechanisms have not been fully elucidated. A natural compound, notoginsenoside R1 (NG-R1) has been reported to exhibit a neuroprotective role in stress conditions. In this study, we explored the function and mechanism of NG-R1 in alleviating bupivacaine-induced neurotoxicity in mouse hippocampal neuronal (HT-22) and mouse neuroblastoma (Neuro-2a) cell lines. Our results exhibited that NG-R1 treatment can significantly rescue the decline of cell survival induced by bupivacaine. Tunel staining and western blotting showed that NG-R1 could attenuate BPV­induced cell apoptosis. Besides, we focused on Mcl1 as a potential target as it showed opposite expression tendency in response to NG-R1 and bupivacaine exposure. Mcl1 knockdown blocked the inhibitory effect of NG-R1 on cell apoptosis against bupivacaine treatment. Intriguingly, we found that NG-R1 can upregulate Mcl1 transcription by activating Stat3 and promote its nuclear translocation. In addition, NG-R1 can also promote Jak1 phosphorylation and docking analysis provide a predicted model for interaction between NG-R1 and phosphorylated Jak1. Taken together, our results demonstrated that NG-R1 can attenuate bupivacaine induced neurotoxicity by activating Jak1/Stat3/Mcl1 pathway.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Síndromes Neurotóxicas / Ginsenosídeos Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: Toxicology Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Síndromes Neurotóxicas / Ginsenosídeos Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: Toxicology Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China