Your browser doesn't support javascript.
loading
[In vitro expression and functional analyses of the mutants p.R243Q, p.R241C and p.Y356X of the human phenylalanine hydroxylase]. / 人苯丙氨酸羟化酶突变体p.R243Q、p.R241C和p.Y356X的体外表达及功能研究.
Pang, Yong-Hong; Gao, Xiang-Yu; Yuan, Zhen-Ya; Huang, Hui; Wang, Zeng-Qin; Peng, Lei; Li, Yi-Qun; Liu, Jie; Liu, Dong; Chen, Gui-Rong.
Afiliação
  • Pang YH; Xuzhou Maternity and Child Health Care Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu 221009, China (Email: yhpang007@163. com).
  • Yuan ZY; Xuzhou Maternity and Child Health Care Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu 221009, China (Email: yhpang007@163. com).
  • Huang H; Xuzhou Maternity and Child Health Care Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu 221009, China (Email: yhpang007@163. com).
  • Wang ZQ; Xuzhou Maternity and Child Health Care Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu 221009, China (Email: yhpang007@163. com).
  • Peng L; Xuzhou Maternity and Child Health Care Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu 221009, China (Email: yhpang007@163. com).
  • Li YQ; Xuzhou Maternity and Child Health Care Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu 221009, China (Email: yhpang007@163. com).
  • Liu J; Xuzhou Maternity and Child Health Care Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu 221009, China (Email: yhpang007@163. com).
  • Liu D; Xuzhou Maternity and Child Health Care Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu 221009, China (Email: yhpang007@163. com).
  • Chen GR; Xuzhou Maternity and Child Health Care Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu 221009, China (Email: yhpang007@163. com).
Zhongguo Dang Dai Er Ke Za Zhi ; 26(2): 188-193, 2024 Feb 15.
Article em Zh | MEDLINE | ID: mdl-38436318
ABSTRACT

OBJECTIVES:

To study the in vitro expression of three phenylalanine hydroxylase (PAH) mutants (p.R243Q, p.R241C, and p.Y356X) and determine their pathogenicity.

METHODS:

Bioinformatics techniques were used to predict the impact of PAH mutants on the structure and function of PAH protein. Corresponding mutant plasmids of PAH were constructed and expressed in HEK293T cells. Quantitative reverse transcription polymerase chain reaction was used to measure the mRNA expression levels of the three PAH mutants, and their protein levels were assessed using Western blot and enzyme-linked immunosorbent assay.

RESULTS:

Bioinformatics analysis predicted that all three mutants were pathogenic. The mRNA expression levels of the p.R243Q and p.R241C mutants in HEK293T cells were similar to the mRNA expression level of the wild-type control (P>0.05), while the mRNA expression level of the p.Y356X mutant significantly decreased (P<0.05). The PAH protein expression levels of all three mutants were significantly reduced compared to the wild-type control (P<0.05). The extracellular concentration of PAH protein was reduced in the p.R241C and p.Y356X mutants compared to the wild-type control (P<0.05), while there was no significant difference between the p.R243Q mutant and the wild type control (P>0.05).

CONCLUSIONS:

p.R243Q, p.R241C and p.Y356X mutants lead to reduced expression levels of PAH protein in eukaryotic cells, with p.R241C and p.Y356X mutants also affecting the function of PAH protein. These three PAH mutants are to be pathogenic.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fenilalanina Hidroxilase Limite: Humans Idioma: Zh Revista: Zhongguo Dang Dai Er Ke Za Zhi Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fenilalanina Hidroxilase Limite: Humans Idioma: Zh Revista: Zhongguo Dang Dai Er Ke Za Zhi Ano de publicação: 2024 Tipo de documento: Article