Your browser doesn't support javascript.
loading
Warfarin-A natural anticoagulant: A review of research trends for precision medication.
Xue, Ling; Singla, Rajeev K; He, Shan; Arrasate, Sonia; González-Díaz, Humberto; Miao, Liyan; Shen, Bairong.
Afiliação
  • Xue L; Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China; Department of Pharmacy, The First
  • Singla RK; Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China; School of Pharmaceutical Sciences
  • He S; IKERDATA S.l., ZITEK, University of The Basque Country (UPVEHU), Rectorate Building, 48940, Bilbao, Basque Country, Spain; Department of Organic and Inorganic Chemistry, Faculty of Science and Technology, University of The Basque Country (UPV/EHU), P.O. Box 644, 48080, Bilbao, Basque Country, Spain.
  • Arrasate S; Department of Organic and Inorganic Chemistry, Faculty of Science and Technology, University of The Basque Country (UPV/EHU), P.O. Box 644, 48080, Bilbao, Basque Country, Spain.
  • González-Díaz H; Department of Organic and Inorganic Chemistry, Faculty of Science and Technology, University of The Basque Country (UPV/EHU), P.O. Box 644, 48080, Bilbao, Basque Country, Spain; BIOFISIKA: Basque Center for Biophysics CSIC, University of The Basque Country (UPV/EHU), Barrio Sarriena s/n, Leioa, Bizk
  • Miao L; Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou, China; Institute for Interdisciplinary Drug Research and Translational Sciences, Soochow University, Suzhou, China; College of Pharmaceutical Sciences, Soochow University, Suzhou, China. Electronic address: miaolysu
  • Shen B; Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China. Electronic address: bairong.shen@
Phytomedicine ; 128: 155479, 2024 Jun.
Article em En | MEDLINE | ID: mdl-38493714
ABSTRACT

BACKGROUND:

Warfarin is a widely prescribed anticoagulant in the clinic. It has a more considerable individual variability, and many factors affect its variability. Mathematical models can quantify the quantitative impact of these factors on individual variability.

PURPOSE:

The aim is to comprehensively analyze the advanced warfarin dosing algorithm based on pharmacometrics and machine learning models of personalized warfarin dosage.

METHODS:

A bibliometric analysis of the literature retrieved from PubMed and Scopus was performed using VOSviewer. The relevant literature that reported the precise dosage of warfarin calculation was retrieved from the database. The multiple linear regression (MLR) algorithm was excluded because a recent systematic review that mainly reviewed this algorithm has been reported. The following terms of quantitative systems pharmacology, mechanistic model, physiologically based pharmacokinetic model, artificial intelligence, machine learning, pharmacokinetic, pharmacodynamic, pharmacokinetics, pharmacodynamics, and warfarin were added as MeSH Terms or appearing in Title/Abstract into query box of PubMed, then humans and English as filter were added to retrieve the literature.

RESULTS:

Bibliometric analysis revealed important co-occuring MeShH and index keywords. Further, the United States, China, and the United Kingdom were among the top countries contributing in this domain. Some studies have established personalized warfarin dosage models using pharmacometrics and machine learning-based algorithms. There were 54 related studies, including 14 pharmacometric models, 31 artificial intelligence models, and 9 model evaluations. Each model has its advantages and disadvantages. The pharmacometric model contains biological or pharmacological mechanisms in structure. The process of pharmacometric model development is very time- and labor-intensive. Machine learning is a purely data-driven approach; its parameters are more mathematical and have less biological interpretation. However, it is faster, more efficient, and less time-consuming. Most published models of machine learning algorithms were established based on cross-sectional data sourced from the database.

CONCLUSION:

Future research on personalized warfarin medication should focus on combining the advantages of machine learning and pharmacometrics algorithms to establish a more robust warfarin dosage algorithm. Randomized controlled trials should be performed to evaluate the established algorithm of warfarin dosage. Moreover, a more user-friendly and accessible warfarin precision medicine platform should be developed.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Varfarina / Medicina de Precisão / Aprendizado de Máquina / Anticoagulantes Limite: Humans Idioma: En Revista: Phytomedicine Assunto da revista: TERAPIAS COMPLEMENTARES Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Varfarina / Medicina de Precisão / Aprendizado de Máquina / Anticoagulantes Limite: Humans Idioma: En Revista: Phytomedicine Assunto da revista: TERAPIAS COMPLEMENTARES Ano de publicação: 2024 Tipo de documento: Article