Your browser doesn't support javascript.
loading
Eggshell membrane as a novel and green platform for the preparation of highly efficient and reversible curcumin-based colorimetric sensor for the monitoring of chicken freshness.
Iqbal, Muhammad Asim; Gohar, Sabeen; Zhu, Chunhong; Mayakrishnan, Gopiraman; Kim, Ick Soo.
Afiliação
  • Iqbal MA; Nano Fusion Technology Research Group, Institute for Fiber Engineering (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda, Nagano 386-8567, Japan; Department of Polymer Engineering, National Textile University, Karachi Campus, 74900 Karachi,
  • Gohar S; Nano Fusion Technology Research Group, Institute for Fiber Engineering (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda, Nagano 386-8567, Japan.
  • Zhu C; Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan.
  • Mayakrishnan G; Nano Fusion Technology Research Group, Institute for Fiber Engineering (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda, Nagano 386-8567, Japan; Division of Molecules and Polymers, Institute for Fiber Engineering (IFES), Interdisciplinary C
  • Kim IS; Nano Fusion Technology Research Group, Institute for Fiber Engineering (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda, Nagano 386-8567, Japan. Electronic address: kim@shinshu-u.ac.jp.
Int J Biol Macromol ; 266(Pt 1): 131089, 2024 May.
Article em En | MEDLINE | ID: mdl-38521340
ABSTRACT
Herein, for the very first time, we report a paper-like biomass, eggshell membrane (ESM), as a suitable platform for the fabrication of a colorimetric sensor (E-Cot). Green ethanolic extract, curcumin (CUR), was used as a sensing material to coat with the ESM. The present E-Cot effectively changed its color (yellow to red) in the real-time monitoring for chicken spoilage. The E-Cot exhibits barrier properties due to its inherent semi-permeability characteristics. Interestingly, the E-Cot showed a significant change in total color difference value (ΔE, 0 days - 0.0-39.6, after 1 day - 39.6-42.1, after 2 days - 42.1-53.6, after 3 days- 53.6-60.1, and after 4 days - 60.1-66.3, detectable by the naked eye) in the real-time monitoring for chicken freshness. In addition, the present E-Cot smart colorimetric sensor is reversible with a change in pH, and the sensor can be reused. Further, the hydrophobic nature of the E-Cot was confirmed by water contact angle analysis (WCA, contact angle of 101.21 ± 8.39). Good antibacterial, barrier, and optical properties of the present E-Cot were also found. Owing to the advantages such as green, efficient, cost-effective, biodegradable, reusable, sustainable, and simple preparation, we believe that the present E-Cot would be a more attractive candidate.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Galinhas / Colorimetria / Curcumina / Casca de Ovo Limite: Animals Idioma: En Revista: Int J Biol Macromol / Int. j. biol. macromol / International journal of biological macromolecules Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Galinhas / Colorimetria / Curcumina / Casca de Ovo Limite: Animals Idioma: En Revista: Int J Biol Macromol / Int. j. biol. macromol / International journal of biological macromolecules Ano de publicação: 2024 Tipo de documento: Article