Your browser doesn't support javascript.
loading
Targeting EGFR degradation by autophagosome degraders.
Zhu, ZhongFeng; Li, Jiaying; Shen, Shujun; Al-Furas, Hawaa; Li, Shengrong; Tong, Yichen; Li, Yi; Zeng, Yucheng; Feng, Qianyi; Chen, Kaiyue; Ma, Nan; Zhou, Fengtao; Zhang, Zhang; Li, Zhengqiu; Pang, Jiyan; Ding, Ke; Xu, Fang.
Afiliação
  • Zhu Z; State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MoE) of the People's Republic of China, Guangzhou City Key Laboratory of Precision Chemi
  • Li J; State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MoE) of the People's Republic of China, Guangzhou City Key Laboratory of Precision Chemi
  • Shen S; State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MoE) of the People's Republic of China, Guangzhou City Key Laboratory of Precision Chemi
  • Al-Furas H; State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MoE) of the People's Republic of China, Guangzhou City Key Laboratory of Precision Chemi
  • Li S; State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MoE) of the People's Republic of China, Guangzhou City Key Laboratory of Precision Chemi
  • Tong Y; School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China.
  • Li Y; State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MoE) of the People's Republic of China, Guangzhou City Key Laboratory of Precision Chemi
  • Zeng Y; State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MoE) of the People's Republic of China, Guangzhou City Key Laboratory of Precision Chemi
  • Feng Q; State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MoE) of the People's Republic of China, Guangzhou City Key Laboratory of Precision Chemi
  • Chen K; State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MoE) of the People's Republic of China, Guangzhou City Key Laboratory of Precision Chemi
  • Ma N; State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MoE) of the People's Republic of China, Guangzhou City Key Laboratory of Precision Chemi
  • Zhou F; State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MoE) of the People's Republic of China, Guangzhou City Key Laboratory of Precision Chemi
  • Zhang Z; State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MoE) of the People's Republic of China, Guangzhou City Key Laboratory of Precision Chemi
  • Li Z; State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MoE) of the People's Republic of China, Guangzhou City Key Laboratory of Precision Chemi
  • Pang J; School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China. Electronic address: cespjy@mail.sysu.edu.cn.
  • Ding K; State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MoE) of the People's Republic of China, Guangzhou City Key Laboratory of Precision Chemi
  • Xu F; State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MoE) of the People's Republic of China, Guangzhou City Key Laboratory of Precision Chemi
Eur J Med Chem ; 270: 116345, 2024 Apr 15.
Article em En | MEDLINE | ID: mdl-38564826
ABSTRACT
Several generations of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors have been developed for the treatment of non-small cell lung cancer (NSCLC) in clinic. However, emerging drug resistance mediated by new EGFR mutations or activations by pass, leads to malignant progression of NSCLC. Proteolysis targeting chimeras (PROTACs) have been utilized to overcome the drug resistance acquired by mutant EGFR, newly potent and selective degraders are still need to be developed for clinical applications. Herein, we developed autophagosome-tethering compounds (ATTECs) in which EGFR can be anchored to microtubule-associated protein-1 light chain-3B (LC3B) on the autophagosome with the assistance of the LC3 ligand GW5074. A series of EGFR-ATTECs have been designed and synthesized. Biological evaluations showed that these compounds could degrade EGFR and exhibited moderate inhibitory effects on certain NSCLC cell lines. The ATTEC 12c potently induced the degradation of EGFR with a DC50 value of 0.98 µM and a Dmax value of 81% in HCC827 cells. Mechanistic exploration revealed that the lysosomal pathway was mainly involved in this degradation. Compound 12c also exhibited promising inhibitory activity, as well as degradation efficiency in vivo. Our study highlights that EGFR-ATTECs could be developed as a new expandable EGFR degradation tool and also reveals a novel potential therapeutic strategy to prevent drug resistance acquired EGFR mutations.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Carcinoma Pulmonar de Células não Pequenas / Neoplasias Pulmonares Limite: Humans Idioma: En Revista: Eur J Med Chem Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Carcinoma Pulmonar de Células não Pequenas / Neoplasias Pulmonares Limite: Humans Idioma: En Revista: Eur J Med Chem Ano de publicação: 2024 Tipo de documento: Article