Your browser doesn't support javascript.
loading
Application of non-ionic liquids-based modified dielectrics during electric discharge machining (EDM) of Ti6Al4V alloy to enhance machining efficiency and process optimization.
Farooq, Muhammad Umar; Tlija, Mehdi; Ali, Shafahat; Khan, Anamta; Adediran, Adeolu A.
Afiliação
  • Farooq MU; School of Mechanical Engineering, University of Leeds, Leeds, LS2 9JT, UK. umarmuf0@gmail.com.
  • Tlija M; Industrial Engineering Department, College of Engineering, King Saud University, P.O. Box 800, 11421, Riyadh, Saudi Arabia.
  • Ali S; School of Engineering, University of Guelph, Guelph, ON, Canada.
  • Khan A; Department of Computer Science, University of Engineering and Technology, Lahore, 54890, Pakistan.
  • Adediran AA; Department of Mechanical Engineering, Landmark University, Kwara State, Omu-Aran, Nigeria. dladesoji@gmail.com.
Sci Rep ; 14(1): 20797, 2024 Sep 05.
Article em En | MEDLINE | ID: mdl-39242758
ABSTRACT
The non-conventional manufacturing technologies are notorious when it comes to productivity and processing time in production-related industries. However, the aerospace and other high-end sectors enjoy another quality matrix of these processes and compromise on the processing time. For instance, the machinability of hard-to-cut materials such as Ti6Al4V aerospace alloy for micro-impressions is challenging and commonly carried out through non-conventional processes. Among these processes, the electric discharge machining (EDM) is famous for machining Ti6Al4V. In the current study, the EDM process is enhanced through modified dielectrics such as kerosene with non-ionic liquids (span 20, 60, and 80) and cryogenically treated tool electrodes (aluminum and graphite), and is compared to the conventional kerosene-based process. A three-phase experimental campaign is deployed to explore parametric effects including modified dielectric conditions (non-ionic liquid type and concentration), tool material, and machine parameter pulse ONOFF time. A total of 60 experiments (54 modified dielectrics and 6 as baseline) were performed to explore process physics. The statistical analyses show that the unmodified process (kerosene dielectric-based) results in the least favorable results 0.58 mm3/min against cryo-graphite and 1.2 mm3/min against cryo-aluminum electrodes. However, the modified dielectrics outperform and improve process dynamics by altering dielectric conditions through hydrophilic-lipophilic balance. Surface morphological analysis shows significantly shallow craters on the machined surface showing evidence of effective flushing through a modified dielectric (S-20) as compared to a kerosene-based dielectric. A thorough microscopical, statistical, and scanning electron-based analysis is carried out to explain the process and correlate significant improvements.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Sci Rep / Sci. rep. (Nat. Publ. Group) / Scientific reports (Nature Publishing Group) Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Sci Rep / Sci. rep. (Nat. Publ. Group) / Scientific reports (Nature Publishing Group) Ano de publicação: 2024 Tipo de documento: Article