Your browser doesn't support javascript.
loading
Regulating the dynamic wetting behavior of pesticide on banana leaves at different growth stages with surfactants.
Jiang, Tingting; Yang, Zhou; Jiang, Yinlong; Xie, Bowei; Huang, Chaowei; Yu, Jiaxiang; Yuan, Haotian; Duan, Jieli.
Afiliação
  • Jiang T; College of Engineering, South China Agricultural University, Guangzhou, China.
  • Yang Z; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.
  • Jiang Y; College of Engineering, South China Agricultural University, Guangzhou, China.
  • Xie B; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.
  • Huang C; School of Mechanical Engineering, Guangdong Ocean University, Zhanjiang, China.
  • Yu J; College of Engineering, South China Agricultural University, Guangzhou, China.
  • Yuan H; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.
  • Duan J; College of Engineering, South China Agricultural University, Guangzhou, China.
Pest Manag Sci ; 2024 Sep 16.
Article em En | MEDLINE | ID: mdl-39279653
ABSTRACT

BACKGROUND:

Pesticide spraying constitutes an essential component of the production and management regimen within banana orchards, extending throughout the entire growth cycle of the banana plants. Exploring the intricate interplay between surfactants, pesticide formulations, and the evolving surface properties of banana leaves throughout their growth stages is critical to the enhancement of pesticide application methods and the elevation of agricultural productivity.

RESULTS:

Through investigating the regulatory impact of surfactants on the physicochemical properties of medicinal solutions, this study elucidates the interaction mechanism between the physicochemical properties of pesticides and the surface characteristics of banana leaves. The findings reveal that the energy dissipation rate of pesticide droplets exhibits a natural exponential rise in correlation with the increase in both the We number and the concentration of surfactant present. Comparatively, the adaxial surface of banana leaves demonstrates superior spreading and adhesion properties for droplets than the abaxial surface. Specifically, droplets containing the anionic surfactant sodium dodecyl sulfate on the adaxial surface of banana leaves are found to spread well with a reduced retraction effect. Conversely, the application of the non-ionic surfactant fatty acid polyoxyethylene ether (AEO-3) on the abaxial surface of banana leaves is more beneficial for the wetting and retention of droplets. As banana leaves grow, there is a noted decline in the spreading and retraction properties of droplets. However, droplets have a higher propensity to wet and adhere to the surfaces of mature banana leaves.

CONCLUSION:

To bolster the adherence of pesticide droplets to leaf surfaces, it is imperative to ensure they possess superior spreading properties and a controlled retraction pace. This facilitates an extended period of contact and enhanced stability, thereby optimizing the spray's deposition efficacy. © 2024 Society of Chemical Industry.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Pest Manag Sci Assunto da revista: TOXICOLOGIA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Pest Manag Sci Assunto da revista: TOXICOLOGIA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China