Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cancer Cell Int ; 23(1): 14, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36717845

RESUMO

BACKGROUND: As a prodrug of 5-fluorouracil (5-FU), orally administrated capecitabine (CAP) undergoes preliminary conversion into active metabolites in the liver and then releases 5-FU in the gut to exert the anti-tumor activity. Since metabolic changes of CAP play a key role in its activation, a single kind of intestinal or hepatic cell can never be used in vitro to evaluate the pharmacokinetics (PK) and pharmacodynamics (PD) nature. Hence, we aimed to establish a novel in vitro system to effectively assess the PK and PD of these kinds of prodrugs. METHODS: Co-culture cellular models were established by simultaneously using colorectal cancer (CRC) and hepatocarcinoma cell lines in one system. Cell Counting Kit-8 (CCK-8) and flow cytometric analysis were used to evaluate cell viability and apoptosis, respectively. Apoptosis-related protein expression levels were measured using western blot analysis. A selective liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed for cellular PK in co-culture models. RESULTS: CAP had little anti-proliferative effect on the five monolayer CRC cell lines (SW480, LoVo, HCT-8, HCT-116 and SW620) or the hepatocarcinoma cell line (HepG2). However, CAP exerted marked anti-tumor activities on each of the CRC cell lines in the co-culture models containing both CRC and hepatocarcinoma cell lines, although its effect on the five CRC cell lines varied. Moreover, after pre-incubation of CAP with HepG2 cells, the culture media containing the active metabolites of CAP also showed an anti-tumor effect on the five CRC cell lines, indicating the crucial role of hepatic cells in the activation of CAP. CONCLUSION: The simple and cost­effective co-culture models with both CRC and hepatocarcinoma cells could mimic the in vivo process of a prodrug dependent on metabolic conversion to active metabolites in the liver, providing a valuable strategy for evaluating the PK and PD characteristics of CAP-like prodrugs in vitro at the early stage of drug development.

2.
Acta Pharmacol Sin ; 44(1): 133-144, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35705686

RESUMO

Cytochrome P450s are important phase I metabolic enzymes located on endoplasmic reticulum (ER) involved in the metabolism of endogenous and exogenous substances. Our previous study showed that a hepatoprotective agent silybin restored CYP3A expression in mouse nonalcoholic fatty liver disease (NAFLD). In this study we investigated how silybin regulated P450s activity during NAFLD. C57BL/6 mice were fed a high-fat-diet (HFD) for 8 weeks to induce NAFLD, and were administered silybin (50, 100 mg ·kg-1 ·d-1, i.g.) in the last 4 weeks. We showed that HFD intake induced hepatic steatosis and ER stress, leading to significant inhibition on the activity of five primary P450s including CYP1A2, CYP2B6, CYP2C19, CYP2D6, and CYP3A in liver microsomes. These changes were dose-dependently reversed by silybin administration. The beneficial effects of silybin were also observed in TG-stimulated HepG2 cells in vitro. To clarify the underlying mechanism, we examined the components involved in the P450 catalytic system, membrane phospholipids and ER membrane fluidity, and found that cytochrome b5 (cyt b5) was significantly downregulated during ER stress, and ER membrane fluidity was also reduced evidenced by DPH polarization and lower polyunsaturated phospholipids levels. The increased ratios of NADP+/NADPH and PC/PE implied Ca2+ release and disruption of cellular Ca2+ homeostasis resulted from mitochondria dysfunction and cytochrome c (cyt c) release. The interaction between cyt c and cyt b5 under ER stress was an important reason for P450s activity inhibition. The effect of silybin throughout the whole course suggested that it regulated P450s activity through its anti-ER stress effect in NAFLD. Our results suggest that ER stress may be crucial for the inhibition of P450s activity in mouse NAFLD and silybin regulates P450s activity by attenuating ER stress.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Silibina/farmacologia , Silibina/metabolismo , Citocromo P-450 CYP3A/metabolismo , Camundongos Endogâmicos C57BL , Sistema Enzimático do Citocromo P-450/metabolismo , Dieta Hiperlipídica/efeitos adversos , Estresse do Retículo Endoplasmático , Fígado/metabolismo
3.
Pharmacol Res ; 185: 106490, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36216131

RESUMO

Acquired drug resistance and epithelial-mesenchymal transition (EMT) mediated metastasis are two highly interacting determinants for non-small-cell lung cancer (NSCLC) prognosis. This study investigated the common mechanisms of drug resistance and EMT from the perspective of metabolic reprogramming, which may offer new ideas to improve anticancer therapy. Acquired resistant cells were found to grow faster and have a greater migratory and invasive capacity than their parent cells. Metabolomics analysis revealed that acquired resistant cells highly relied on glutamine utilization and mainly fluxed into oxidative phosphorylation energy production. Further mechanistic studies screened out glutamate dehydrogenase 1 (GLUD1) as the determinant of glutamine addiction in acquired resistant NSCLC cells, and provided evidence that GLUD1-mediated α-KG production and the accompanying reactive oxygen species (ROS) accumulation primarily triggered migration and invasion by inducing Snail. Pharmacological and genetic interference with GLUD1 in vitro significantly reversed drug resistance and decreased cell migration and invasion capability. Lastly, the successful application of R162, a selective GLUD1 inhibitor, to overcome both acquired resistance and EMT-induced metastasis in vivo, identified GLUD1 as a promising and druggable therapeutic target for malignant progression of NSCLC. Collectively, our study offers a potential strategy for NSCLC therapy, especially for drug-resistant patients with highly expressed GLUD1.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Transição Epitelial-Mesenquimal , Glutamato Desidrogenase/genética , Glutamato Desidrogenase/uso terapêutico , Glutamina/metabolismo , Glutamina/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Fatores de Transcrição da Família Snail/metabolismo
4.
Drug Metab Dispos ; 49(11): 985-994, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34462267

RESUMO

Drug resistance of cancer cells is associated with redox homeostasis. The mechanism of acquired resistance of cancer cells to antitumor drugs is not well understood. Our previous studies revealed that drug resistance and highly expressed P-glycoprotein (P-gp) of MCF-7 breast cancer cells was dependent on intracellular redox homeostasis and declined capacity for scavenging reactive oxygen species (ROS). Recently, we observed that, unlike nontumorigenic cells MCF-10A, three tumorigenic breast cancer cells (MCF-7S, BT474, MDA-MB-231) reprogrammed their metabolism, highly expressed cystathionine-γ-lyase (CTH), and acquired a particular specialty to use methionine (Met) to synthesize glutathione (GSH) through the transsulfuration pathway. Interestingly, doxorubicin (adriamycin) further reprogrammed metabolism of MCF-7 cells sensitive to adriamycin (MCF-7S) and induced them to be another MCF-7 cell line resistant to adriamycin (MCF-7R) with dramatically downregulated CTH. The two MCF-7 cell lines showed distinctly different phenotypes in terms of intracellular GSH, ROS levels, expression and activity of P-gp and CTH, and drug resistance. We showed that CTH modulation or the methionine supply brought about the interconversion between MCF-7S and MCF-7R. Methionine deprivation or CTH silencing induced a resistant MCF-7R and lowered paclitaxel activity, yet methionine supplementation or CTH overexpression reversed the above effects, induced a sensitive phenotype of MCF-7S, and significantly increased the cytotoxicity of paclitaxel both in vitro and in vivo. Interleukin-6 (IL-6)/signal transducer and activator of transcription-3 (STAT3) initiated CTH expression and activity, and the effect on the resistant phenotype was exclusively dependent on CTH and ROS. This study suggests that the IL-6/STAT3/CTH axis plays a key role in the transformation between sensitive and resistant MCF-7 cells. SIGNIFICANCE STATEMENT: Cystathionine γ-lyase (CTH) plays a key role in transformation between the sensitive and resistant phenotypes of MCF-7 cells and is dependent on the interleukin-6 (IL-6)/signal transducer and activator of transcription-3 (STAT3) signaling axis. Modulation of the transsulfuration pathway on CTH or IL-6/STAT3 or methionine supplementation is beneficial for reversing the resistance of MCF-7 cells, which indicates a clinical translation potential.


Assuntos
Cistationina gama-Liase/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Interleucina-6/metabolismo , Fator de Transcrição STAT3/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Antibióticos Antineoplásicos/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Regulação para Baixo/efeitos dos fármacos , Doxorrubicina/farmacologia , Feminino , Glutationa/metabolismo , Humanos , Células MCF-7 , Metionina/metabolismo , Paclitaxel/farmacologia , Fenótipo , Espécies Reativas de Oxigênio/metabolismo
5.
Drug Metab Dispos ; 49(9): 770-779, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34183378

RESUMO

Silybin is widely used as a hepatoprotective agent in various liver disease therapies and has been previously identified as a CYP3A inhibitor. However, little is known about the effect of silybin on CYP3A and the regulatory mechanism during high-fat-diet (HFD)-induced liver inflammation. In our study, we found that silybin restored CYP3A expression and activity that were decreased by HFD and conditioned medium (CM) from palmitate-treated Kupffer cells. Moreover, silybin suppressed liver inflammation in HFD-fed mice and inhibited nuclear factor κ-B translocation into the nucleus through elevation of SIRT2 expression and promotion of p65 deacetylation. This effect was confirmed by overexpression of SIRT2, which suppressed p65 nuclear translocation and restored CYP3A transcription affected by CM. The hepatic NAD+ concentration markedly decreased in HFD-fed mice and CM-treated hepatocytes/HepG2 cells but increased after silybin treatment. Supplementing nicotinamide mononucleotide as an NAD+ donor inhibited p65 acetylation, decreased p65 nuclear translocation, and restored cyp3a transcription in both HepG2 cells and mouse hepatocytes. These results suggest that silybin regulates metabolic enzymes during liver inflammation by a mechanism related to the increase in NAD+ and SIRT2 levels. In addition, silybin enhanced the intracellular NAD+ concentration by decreasing poly-ADP ribosyl polymerase-1 expression. In summary, silybin increased NAD+ concentration, promoted SIRT2 expression, and lowered p65 acetylation both in vivo and in vitro, which supported the recovery of CYP3A expression. These findings indicate that the NAD+/SIRT2 pathway plays an important role in CYP3A regulation during nonalcoholic fatty liver disease. SIGNIFICANCE STATEMENT: This research revealed the differential regulation of CYP3A by silybin under physiological and fatty liver pathological conditions. In the treatment of nonalcoholic fatty liver disease, silybin restored, not inhibited, CYP3A expression and activity through the NAD+/ sirtuin 2 pathway in accordance with its anti-inflammatory effect.


Assuntos
Citocromo P-450 CYP3A/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Silibina , Sirtuína 2 , Animais , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Dieta Hiperlipídica , Inflamação/metabolismo , Células de Kupffer/efeitos dos fármacos , Células de Kupffer/metabolismo , Camundongos , NAD/metabolismo , NF-kappa B/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Substâncias Protetoras/metabolismo , Substâncias Protetoras/farmacologia , Transdução de Sinais/efeitos dos fármacos , Silibina/metabolismo , Silibina/farmacologia , Sirtuína 2/genética , Sirtuína 2/metabolismo
6.
Drug Metab Dispos ; 49(3): 276-286, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33376148

RESUMO

Our previous study suggests that berberine (BBR) lowers lipids by modulating bile acids and activating intestinal farnesoid X receptor (FXR). However, to what extent this pathway contributes to the hypoglycemic effect of BBR has not been determined. In this study, the glucose-lowering effects of BBR and its primary metabolites, berberrubine (M1) and demethyleneberberine, in a high-fat diet-induced obese mouse model were studied, and their modulation of the global metabolic profile of mouse livers and systemic bile acids was determined. The results revealed that BBR (150 mg/kg) and M1 (50 mg/kg) decreased mouse serum glucose levels by 23.15% and 48.14%, respectively. Both BBR and M1 markedly modulated the hepatic expression of genes involved in gluconeogenesis and metabolism of amino acids, fatty acids, and purine. BBR showed a stronger modulatory effect on systemic bile acids than its metabolites. Moreover, molecular docking and gene expression analysis in vivo and in vitro suggest that BBR and M1 are FXR agonists. The mRNA levels of gluconeogenesis genes in the liver, glucose-6-phosphatase and phosphoenolpyruvate carboxykinase, were significantly decreased by BBR and M1. In summary, BBR and M1 modulate systemic bile acids and activate the intestinal FXR signaling pathway, which reduces hepatic gluconeogenesis by inhibiting the gene expression of gluconeogenesis genes, achieving a hypoglycemic effect. BBR and M1 may function as new, natural, and intestinal-specific FXR agonists with a potential clinical application to treat hyperglycemia and obesity. SIGNIFICANCE STATEMENT: This investigation revealed that BBR and its metabolite, berberrubine, significantly lowered blood glucose, mainly through activating intestinal farnesoid X receptor signaling pathway, either directly by themselves or indirectly by modulating the composition of systemic bile acids, thus inhibiting the expression of gluconeogenic genes in the liver and, finally, reducing hepatic gluconeogenesis and lowering blood glucose. The results will help elucidate the mechanism of BBR and provide a reference for mechanism interpretation of other natural products with low bioavailability.


Assuntos
Berberina/análogos & derivados , Berberina/farmacologia , Gluconeogênese/fisiologia , Hipoglicemiantes/farmacologia , Fígado/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Dieta Hiperlipídica/efeitos adversos , Gluconeogênese/efeitos dos fármacos , Íleo/efeitos dos fármacos , Íleo/metabolismo , Fígado/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Secundária de Proteína , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
7.
Future Oncol ; 17(32): 4355-4369, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34674559

RESUMO

Aim: To screen and identify the potential biomarkers co-existing in plasma and serum of patients with non-small-cell lung cancer (NSCLC), and establish appropriate diagnostic models. Methods: A cohort of 195 plasma samples and 180 serum samples were obtained from healthy controls (HCs), adenocarcinoma (AdC) and squamous cell carcinoma (SqCC) patients enrolled from the First Affiliated Hospital of Nanjing Medical University. Metabolites in plasma and serum were analyzed by GC-MS. Results: Hypoxanthine was found to have good performance in the differential diagnosis of NSCLC (including AdC and SqCC) and HC (area under the receiver operating characteristic [AUROC] ≥0.85). Combinations of metabolites could be used for differential diagnosis of NSCLC and HC (AUROC >0.93), AdC and HC (AUROC >0.91), SqCC and HC (AUROC >0.95), AdC and SqCC (AUROC >0.72). Conclusions: Metabolomics based on GC-MS can screen and identify the differential metabolites coexisting in plasma and serum of patients with NSCLC, and prediction models established by this method can be used for the differential diagnosis of patients with NSCLC.


Lay abstract Non-small-cell lung cancer (NSCLC) is not easy to diagnose. This study was intended to determine metabolites to differentiate NSCLC and healthy control samples (HC). In this study, we collected plasma and serum of NSCLC and HC. Then we performed a metabolomic analysis on these blood samples. The results showed that some metabolites were co-existing in plasma and serum of NSCLC. These co-existing metabolites (such as hypoxanthine, glyceric acid and aspartate) could differentiate NSCLC and HC.


Assuntos
Biomarcadores Tumorais/sangue , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Neoplasias Pulmonares/diagnóstico , Idoso , Carcinoma Pulmonar de Células não Pequenas/sangue , Análise por Conglomerados , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Neoplasias Pulmonares/sangue , Masculino , Metabolômica , Pessoa de Meia-Idade , Método Simples-Cego
8.
Acta Pharmacol Sin ; 42(12): 2132-2143, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33658706

RESUMO

Continuous docetaxel (DTX) treatment of non-small cell lung cancer induces development of drug resistance, but the mechanism is poorly understood. In this study we performed metabolomics analysis to characterize the metabolic patterns of sensitive and resistant A549 non-small cell lung cancer cells (A549/DTX cells). We showed that the sensitive and resistant A549 cells exhibited distinct metabolic phenotypes: the resistant cells were characterized by an altered microenvironment of redox homeostasis with reduced glutathione and elevated reactive oxygen species (ROS). DTX induction reprogrammed the metabolic phenotype of the sensitive cells, which acquired a phenotype similar to that of the resistant cells: it reduced cystine influx, inhibited glutathione biosynthesis, increased ROS and decreased glutathione/glutathione disulfide (GSH/GSSG); the genes involved in glutathione biosynthesis were dramatically depressed. Addition of the ROS-inducing agent Rosup (25, 50 µg/mL) significantly increased P-glycoprotein expression and reduced intracellular DTX in the sensitive A549 cells, which ultimately acquired a phenotype similar to that of the resistant cells. Supplementation of cystine (1.0 mM) significantly increased GSH synthesis, rebalanced the redox homeostasis of A549/DTX cells, and reversed DTX-induced upregulation of P-glycoprotein, and it markedly improved the effects of DTX and inhibited the growth of A549/DTX in vitro and in vivo. These results suggest that microenvironmental redox homeostasis plays a key role in the acquired resistance of A549 cancer cells to DTX. The enhancement of GSH synthesis by supplementary cystine is a promising strategy to reverse the resistance of tumor cells and has potential for translation in the clinic.


Assuntos
Antineoplásicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Cistina/uso terapêutico , Docetaxel/uso terapêutico , Homeostase/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Células A549 , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Antineoplásicos/farmacologia , Cistina/farmacologia , Docetaxel/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Sinergismo Farmacológico , Glutationa/metabolismo , Humanos , Masculino , Camundongos Nus , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
9.
Acta Pharmacol Sin ; 41(1): 129-137, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31341258

RESUMO

Rheumatoid arthritis patients can be prescribed a combination of immunosuppressive drug leflunomide (LEF) and the antiviral drug acyclovir to reduce the high risk of infection. Acyclovir is a substrate of organic anion transporter (OAT) 1/3 and multidrug resistance-associated protein (MRP) 2. Considering the extraordinarily long half-life of LEF's active metabolite teriflunomide (TER) and the kidney injury risk of acyclovir, it is necessary to elucidate the potential impact of LEF on the disposition of acyclovir. Here we used a specific MRP inhibitor MK571 and probenecid (OAT1/3 and MRP2 inhibitor) to assess the effects of MRP2 and OAT1/3 on the pharmacokinetics and tissue distribution of acyclovir in rats. We showed that LEF and probenecid, but not MK571 significantly increased the plasma concentration of acyclovir. However, kidney and liver exposures of acyclovir were increased when coadministered with LEF, probenecid or MK571. The kidney/plasma ratio of acyclovir was increased to approximately 2-fold by LEF or probenecid, whereas it was increased to as much as 14.5-fold by MK571. Consistently, these drugs markedly decreased the urinary excretion of acyclovir. TER (0.5-100 µmol/L) dose-dependently increased the accumulation of acyclovir in MRP2-MDCK cells with an IC50 value of 4.91 µmol/L. TER (5 µmol/L) significantly inhibited the uptake of acyclovir in hOAT1/3-HEK293 cells. These results suggest that LEF/TER increased the kidney accumulation of acyclovir by inhibiting the efflux transporter MRP2, which increased its kidney/plasma ratio and renal injury risk. However, the inhibitory effects of LEF/TER on OAT1/3 reduced the tubular cells' uptake of acyclovir and increased the plasma concentration.


Assuntos
Aciclovir/farmacocinética , Rim/metabolismo , Leflunomida/farmacologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/antagonistas & inibidores , Proteína 1 Transportadora de Ânions Orgânicos/antagonistas & inibidores , Transportadores de Ânions Orgânicos Sódio-Independentes/antagonistas & inibidores , Aciclovir/administração & dosagem , Aciclovir/metabolismo , Administração Intravenosa , Animais , Células Cultivadas , Crotonatos/administração & dosagem , Crotonatos/metabolismo , Crotonatos/farmacologia , Cães , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Hidroxibutiratos , Leflunomida/administração & dosagem , Leflunomida/metabolismo , Células Madin Darby de Rim Canino/efeitos dos fármacos , Células Madin Darby de Rim Canino/metabolismo , Masculino , Proteína 2 Associada à Farmacorresistência Múltipla , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Nitrilas , Proteína 1 Transportadora de Ânions Orgânicos/metabolismo , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Probenecid/administração & dosagem , Probenecid/metabolismo , Probenecid/farmacologia , Propionatos/administração & dosagem , Propionatos/metabolismo , Propionatos/farmacologia , Quinolinas/administração & dosagem , Quinolinas/metabolismo , Quinolinas/farmacologia , Ratos , Ratos Sprague-Dawley , Distribuição Tecidual , Toluidinas/administração & dosagem , Toluidinas/metabolismo , Toluidinas/farmacologia
10.
Acta Pharmacol Sin ; 41(1): 73-81, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31427695

RESUMO

Kaempferol is a natural flavonol that possesses various pharmacological activities, including anti-arthritis effects, yet the underlying mechanisms remain controversial. To evaluate the anti-arthritis efficacy and the underlying mechanisms of kaempferol, collagen-induced arthritis (CIA) mice were treated with kaempferol intragastrically (200 mg · kg-1 · d-1) and intraperitoneally (20 mg · kg-1 · d-1). Pharmacodynamic and pharmacokinetic studies showed that the oral administration of kaempferol produced distinct anti-arthritis effects in model mice with arthritis in terms of the spleen index, arthritis index, paw thickness, and inflammatory factors; the bioavailability (1.5%, relative to that of the intraperitoneal injection) and circulatory exposure of kaempferol (Cmax = 0.23 ± 0.06 ng/mL) and its primary metabolite kaempferol-3-O-glucuronide (Cmax = 233.29 ± 89.64 ng/mL) were rather low. In contrast, the intraperitoneal injection of kaempferol caused marginal anti-arthritis effects, although it achieved a much higher in vivo exposure. The much higher kaempferol content in the gut implicated a potential mechanism involved in the gut. Analysis of 16S ribosomal RNA revealed that CIA caused imbalance of 14 types of bacteria at the family level, whereas kaempferol largely rebalanced the intestinal microbiota in CIA mice. A metabolomics study showed that kaempferol treatment significantly reversed the perturbation of metabolites involved in energy production and the tryptophan, fatty acid and secondary bile acid metabolisms in the gut contents of the CIA mice. In conclusion, we demonstrate for the first time that the high level of kaempferol in the gut regulates the intestinal flora and microbiotic metabolism, which are potentially responsible for the anti-arthritis activities of kaempferol.


Assuntos
Anti-Inflamatórios/farmacologia , Artrite Experimental/tratamento farmacológico , Microbioma Gastrointestinal/efeitos dos fármacos , Quempferóis/farmacologia , Quempferóis/uso terapêutico , Administração Oral , Animais , Anti-Inflamatórios/administração & dosagem , Artrite Experimental/induzido quimicamente , Artrite Experimental/patologia , Autoanticorpos/análise , Bovinos , Colágeno Tipo II , Citocinas/análise , Modelos Animais de Doenças , Quempferóis/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos DBA
11.
Pharmacology ; 105(9-10): 576-585, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32097949

RESUMO

OBJECTIVE: Diabetic cardiomyopathy (DCM) is a serious complication of type 2 diabetes mellitus (T2DM), resulting in unfavorable prognosis. Icariin (ICA) is a major flavonoid isolated from the traditional oriental herbal medicine Epimedium that has been recently proved to show potential therapeutic efficacy on T2DM. The aim of this study was to investigate the underlying mechanism of how ICA improved DCM in rat models. METHODS: To corroborate myocardial improvement by ICA, we managed to establish the T2DM rat model by streptozotocin (STZ) administration and high-glucose-high-fat diet. RESULTS: The rats with T2DM showed severe insulin resistance, left ventricular dysfunction, aberrant lipids deposition, cardiac inflammation, and fibrosis compared with the control group. All these pathological symptoms were ameliorated by the treatment of ICA. The levels of extracellular matrix proteins of heart tissue significantly declined in ICA-treated rats. CONCLUSION: ICA may exert as a protector in T2DM-induced DCM by reducing extracellular matrix proteins in the heart tissue, implicating its potential role for the treatment of human DCM.


Assuntos
Cardiotônicos/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Cardiomiopatias Diabéticas/tratamento farmacológico , Proteínas da Matriz Extracelular/metabolismo , Flavonoides/farmacologia , Miocárdio/metabolismo , Animais , Cardiotônicos/uso terapêutico , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Cardiomiopatias Diabéticas/etiologia , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/patologia , Dieta Hiperlipídica/efeitos adversos , Proteínas da Matriz Extracelular/efeitos dos fármacos , Flavonoides/uso terapêutico , Coração/efeitos dos fármacos , Masculino , Miocárdio/patologia , Ratos , Ratos Sprague-Dawley , Estreptozocina
12.
J Proteome Res ; 18(1): 57-68, 2019 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-30362349

RESUMO

Ischemic tolerance renders the brain resistant to ischemia-reperfusion (I/R) injury as a result of the activation of endogenous adaptive responses triggered by various types of preconditioning. The complex underlying metabolic mechanisms responsible for the neuroprotection of cerebral ischemic preconditioning (IPC) remain elusive. Herein, gas chromatography-mass spectrometry (GC-MS) technique was applied to delineate the dynamic changes of brain metabolome in a rodent model of ischemic stroke (transient occlusion of the middle cerebral artery, tMCAO), alone or after pretreatment with nonlethal ischemic tolerance induction (transient occlusion of the bilateral common carotid arteries, tBCCAO). Metabolomic analysis showed that accumulation of glucose (concentration increased more than 4 fold) and glycolytic intermediates is the prominent feature of brain I/R-induced metabolic disturbance. IPC attenuated brain I/R damage by subduing postischemic hyperglycolysis, increasing the pentose phosphate pathway (PPP) flux and promoting the utilization of ß-hydroxybutyrate. The expression analysis of pivotal genes and proteins involved in relevant metabolic pathways revealed that the downregulation of AMP-activated protein kinase (AMPK)-mediated glucose transporter-1 (GLUT-1) and 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3) and reduced mRNA levels of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) subunits were associated with IPC-induced metabolic flexibility, which allows the brain to be more capable of withstanding severe I/R insults. The present study provided mechanistic insights into the metabolic signature of IPC and indicated that adaptively modulating brain glucose metabolism could be an effective approach for the therapeutic intervention of ischemic stroke.


Assuntos
Encéfalo/metabolismo , Glucose/metabolismo , Precondicionamento Isquêmico , Metabolômica , Neuroproteção , Animais , Isquemia Encefálica/prevenção & controle , Modelos Animais de Doenças , Cromatografia Gasosa-Espectrometria de Massas , Traumatismo por Reperfusão/terapia , Roedores , Acidente Vascular Cerebral/patologia , Acidente Vascular Cerebral/terapia
13.
Cancer Sci ; 110(10): 3328-3339, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31429167

RESUMO

Apatinib, an antiangiogenic agent, shows efficient antitumor activity in a broad range of malignancies. Considering tumor is a type of metabolic disease, we investigated the metabolomics changes in serum and tumor after apatinib treatment and the molecular mechanism of characteristic changes associated with its antitumor efficacy. Molecules in serum and tumor tissue were extracted and analyzed by a gas chromatography-mass spectrometry metabolic platform. Apatinib significantly inhibited e tumor growth and alleviated metabolic rearrangement in both serum and tumor of A549 xenograft mice. Among these endogenous metabolites, 3-hydroxybutyric acid (3-HB) was significantly increased in serum, tumor and liver after apatinib treatment. Interestingly, giving exogenous 3-HB also inhibited tumor growth. Gene expression, dual luciferase reporter gene assay and molecular docking analysis all indicated that apatinib could induce 3-HB production through the dependent activation of peroxisome proliferator-activated receptor α (PPARα) and promotion of fatty acid utilization in the liver. Therefore, increased content of 3-HB induced by PPARα activation in the liver partially contributed to the antitumor effect of apatinib. It may provide clues to another potential mechanism underlying the antitumor effect of apatinib besides its antiangiogenic effect through inhibiting vascular endothelial growth factor receptor 2.


Assuntos
Ácido 3-Hidroxibutírico/metabolismo , Fígado/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , PPAR alfa/genética , Piridinas/administração & dosagem , Células A549 , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Masculino , Metabolômica/métodos , Camundongos , Piridinas/farmacologia , Ativação Transcricional , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Metabolomics ; 15(10): 128, 2019 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-31541307

RESUMO

INTRODUCTION: Clinical trials of Compound danshen dripping pills (CDDP) indicated distinct improvement in patients with chronic stable angina. Daily fluctuation of therapeutic effect agreed with a peak-valley PK profile during a 4-week CDDP regimen, but stabilized after 8-week treatment. OBJECTIVES: This article aims to explore the underlying mechanism for the time-dependent drug efficacy of the up-down fluctuation or stabilization in clinic trials. METHODS: A rat model of myocardial ischemia was established via isoproterenol induction. Metabolomics was employed to analyze the energy-related substances both in circulatory system and myocardium in the myocardial ischemia model. RESULTS: CDDP treatment ameliorated myocardial ischemia, reversed the reprogramming of the metabolism induced by ISO and normalized the level of most myocardial substrates and the genes/enzymes associated with those metabolic changes. After 1- or 2-week treatment, CDDP regulated plasma and myocardial metabolome in an analogous, time-dependent way, and modulated metabolic patterns of ischemic rats that perfectly matched with the fluctuated or stabilized effects observed in clinical trials with 4 or 8-week treatment, respectively. CONCLUSION: Metabolic modulation by CDDP contributes to the fluctuated or stabilized therapeutic outcome, and is a potential therapeutic approach for myocardial ischemia diseases.


Assuntos
Medicamentos de Ervas Chinesas/uso terapêutico , Metabolômica , Isquemia Miocárdica/tratamento farmacológico , Animais , Canfanos , Estudos de Coortes , Modelos Animais de Doenças , Feminino , Isoproterenol , Masculino , Isquemia Miocárdica/induzido quimicamente , Isquemia Miocárdica/metabolismo , Panax notoginseng , Ratos , Ratos Sprague-Dawley , Salvia miltiorrhiza , Fatores de Tempo
15.
FASEB J ; 32(2): 757-767, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28970254

RESUMO

Silybin is one of the effective, traditional Chinese medicines used as a hepatoprotective agent in nonalcoholic fatty liver disease (NAFLD) therapy worldwide, and the NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome has been recognized as an important factor involved in NAFLD development. However, little is known about the mechanisms of silybin in the regulation of high-fat diet (HFD)-induced liver inflammation. In our study, we found that silybin inhibited endoplasmic reticulum stress and NLRP3 inflammasome activation in the livers of HFD-fed mice and in cultured hepatocytes. Phosphorylation of inositol-requiring enzyme (IRE)1α and eIF2α, expression of thioredoxin-interacting protein and cleaved caspase-1, and release of IL-1ß were reduced by silybin. In addition, silybin inhibited the approach of calreticulin and translocase of outer membrane 20 (Tom20), prevented assembly of the NLRP3 inflammasome complex, and suppressed the accumulation of acetylated α-tubulin in the perinuclear region. Both MEC-17 and sirtuin 2 (SIRT2) were influenced by palmitate and silybin, whereas histone deacetylase 6 was not affected. In addition, supplementing NAD+ directly or increasing NAD+ concentration with silybin could maintain the activity of SIRT2. The anti-inflammatory effect of silybin was blocked by SIRT2 silencing or by the SIRT2 inhibitor AGK2, as evidenced by NLRP3/ASC colocalization, AC-α-tubulin expression, and IL-1ß release. These findings indicate that the NAD+/SIRT2 pathway is an important mediator through which silybin prevents NLRP3 inflammasome activation during NAFLD.-Zhang, B., Xu, D., She, L., Wang, Z., Yang, N., Sun, R., Zhang, Y., Yan, C., Wei, Q., Aa, J., Liu, B., Wang, G., Xie, Y. Silybin inhibits NLRP3 inflammasome assembly through the NAD+/SIRT2 pathway in mice with nonalcoholic fatty liver disease.


Assuntos
Inflamassomos/metabolismo , NAD/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Transdução de Sinais , Silimarina/farmacologia , Sirtuína 2/metabolismo , Animais , Caspase 1/metabolismo , Endorribonucleases/metabolismo , Fator de Iniciação 2 em Eucariotos/metabolismo , Furanos/farmacologia , Inativação Gênica , Interleucina-1beta/metabolismo , Masculino , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Quinolinas/farmacologia , Receptores de Superfície Celular/metabolismo , Silibina , Sirtuína 2/antagonistas & inibidores
16.
Pharmacol Res ; 150: 104500, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31629092

RESUMO

Ketone bodies are traditionally viewed as metabolic substrates in carbohydrate restriction and are applied in the treatment of epilepsy and other neurodegenerative diseases. Recently, people have paid more attention to its application in the treatment for cancers. Compared to normal cells, cancer cells maintain a higher level of reactive oxygen species (ROS) due to the dysfunctional oxidative phosphorylation and they highly rely on glucose for glycolysis and pentose phosphate pathway (PPP) to against the oxidative stress. Based on tumor metabolism, ketogenic diets (low-carbohydrate, high-fat, and moderate protein) or ketone supplementation, as non-toxic therapeutic approaches, showed a positive therapeutic advantage in a broad range of malignancies. This review summarizes the multi-dimensional roles of ketone bodies in cancer biology and discusses the potential underlying mechanism in the inhibition of tumor growth.


Assuntos
Corpos Cetônicos/metabolismo , Neoplasias/metabolismo , Ácido 3-Hidroxibutírico/metabolismo , Animais , Dieta Cetogênica , Humanos , Fígado/metabolismo , Neoplasias/tratamento farmacológico
17.
Acta Pharmacol Sin ; 40(1): 86-97, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29930278

RESUMO

Epalrestat is an inhibitor of aldose reductase in the polyol pathway and is used for the management of diabetic neuropathy clinically. Our pilot experiments and accumulated evidences showed that epalrestat inhibited polyol pathway and reduced sorbitol production, and suggested the potential renal protection effects of epalrestat on diabetic nephropathy (DN). To evaluate the protective effect of epalrestat, the db/db mice were used and exposed to epalrestat for 8 weeks, both the physiopathological condition and function of kidney were examined. For the first time, we showed that epalrestat markedly reduced albuminuria and alleviated the podocyte foot process fusion and interstitial fibrosis of db/db mice. Metabolomics was employed, and metabolites in the plasma, renal cortex, and urine were profiled using a gas chromatography-mass spectrometry (GC/MS)-based metabolomic platform. We observed an elevation of sorbitol and fructose, and a decrease of myo-inositol in the renal cortex of db/db mice. Epalrestat reversed the renal accumulation of the polyol pathway metabolites of sorbitol and fructose, and increased myo-inositol level. Moreover, the upregulation of aldose reductase, fibronectin, collagen III, and TGF-ß1 in renal cortex of db/db mice was downregulated by epalrestat. The data suggested that epalrestat has protective effects on DN, and the inhibition of aldose reductase and the modulation of polyol pathway in nephritic cells be a potentially therapeutic strategy for DN.


Assuntos
Aldeído Redutase/antagonistas & inibidores , Nefropatias Diabéticas/prevenção & controle , Inibidores Enzimáticos/uso terapêutico , Substâncias Protetoras/uso terapêutico , Rodanina/análogos & derivados , Tiazolidinas/uso terapêutico , Albuminúria/tratamento farmacológico , Animais , Frutose/sangue , Frutose/metabolismo , Frutose/urina , Inositol/sangue , Inositol/metabolismo , Inositol/urina , Rim/metabolismo , Rim/patologia , Masculino , Metabolômica , Camundongos , Rodanina/uso terapêutico , Sorbitol/sangue , Sorbitol/metabolismo , Sorbitol/urina
18.
Xenobiotica ; 49(3): 375-380, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29521134

RESUMO

The aim of this analysis was to explore the influence of CYP3A4*1G and CYP3A5*3 polymorphisms on the pharmacokinetics of tylerdipine in healthy Chinese subjects. A total of 64 and 63 healthy Chinese subjects were included and identified as the genotypes of CYP3A4*1G and CYP3A5*3, respectively. Plasma samples were collected for up to 120 h post-dose to characterize the pharmacokinetic profile following single oral dose of the drug (5, 15, 20, 25 and 30 mg). Plasma levels were measured by a high-performance liquid chromatography-mass spectrometry (LC-MS/MS). The pharmacokinetic parameters were calculated using non-compartmental method. The maximum concentration (Cmax) and the area under the curve (AUC0-24 h) were all corrected by the dose given. In the wild-type group, the mean dose-corrected AUC0-24 h was 1.35-fold larger than in CYP3A4*1G carriers (p = .018). Among the three CYP3A5 genotypes, there showed significantly difference (p = .008) in the t1/2, but no significant difference was observed for the AUC0-24 h and Cmax. In subjects with the CYP3A5*3/*3 genotype, the mean t1/2 was 1.35-fold higher than in CYP3A5*1/*1 group (p = .007). And the t1/2 in CYP3A5*3 carriers also was 1.32-fold higher than in the wild-type group (p = .004). CYP3A4*1G and CYP3A5*3 polymorphisms may influence tylerdipine pharmacokinetic in healthy Chinese subjects.


Assuntos
Bloqueadores dos Canais de Cálcio/farmacocinética , Citocromo P-450 CYP3A/genética , Nitrobenzenos/farmacocinética , Polimorfismo Genético , Adolescente , Adulto , Bloqueadores dos Canais de Cálcio/química , Cromatografia Líquida , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Nitrobenzenos/química , Espectrometria de Massas em Tandem
19.
Molecules ; 24(24)2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-31835615

RESUMO

High-calorie diet, circadian rhythms and metabolic features are intimately linked. However, the mediator(s) between nutritional status, circadian rhythms and metabolism remain largely unknown. This article aims to clarify the key metabolic pathways bridging nutritional status and circadian rhythms based on a combination of metabolomics and molecular biological techniques. A mouse model of high-fat diet-induced obesity was established and serum samples were collected in obese and normal mice at different zeitgeber times. Gas chromatography/mass spectrometry, multivariate/univariate data analyses and metabolic pathway analysis were used to reveal changes in metabolism. Metabolites involved in the metabolism of purines, carbohydrates, fatty acids and amino acids were markedly perturbed in accordance with circadian related variations, among which purine catabolism showed a typical oscillation. What's more, the rhythmicity of purine catabolism dampened in the high-fat diet group. The expressions of clock genes and metabolic enzymes in the liver were measured. The mRNA expression of Xanthine oxidase (Xor) was highly correlated with the rhythmicity of Clock, Rev-erbα and Bmal1, as well as the metabolites involved in purine catabolism. These data showed that a high-fat diet altered the circadian rhythm of metabolic pathways, especially purine catabolism. It had an obvious circadian oscillation and a high-fat diet dampened its circadian rhythmicity. It was suggested that circadian rhythmicity of purine catabolism is related to circadian oscillations of expression of Xor, Uox and corresponding clock genes.


Assuntos
Ritmo Circadiano , Dieta Hiperlipídica , Obesidade/etiologia , Obesidade/metabolismo , Purinas/metabolismo , Animais , Biomarcadores , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Metaboloma , Metabolômica/métodos , Camundongos
20.
Inflammopharmacology ; 27(6): 1193-1203, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31309485

RESUMO

Paeoniflorin shows distinct anti-arthritis and immunoregulatory activities, but its rather low bioavailability via oral administration greatly challenges its known mechanism of in vivo activity. Our data showed that oral administration, instead of intraperitoneal injection, of paeoniflorin significantly reduced the polyarthritis index by 44.4%, reduced paw swelling by 18.4% and delayed the onset of arthritis in collagen-induced arthritis (CIA) mice. Oral paeoniflorin treatment also downregulated the systemic pro-inflammatory cytokines IL-6 (by 52.2%), TNF-α (by 57.7%) and IL-1ß (by 34.1%). A pharmacokinetic study revealed that the maximal plasma concentration of paeoniflorin after oral administration was 4.8 ± 1.9 µM in the CIA mice, much lower than the effective concentration in vitro (30 µM). In contrast, paeoniflorin was highly concentrated in the gut content, intestine and Peyer's patches. T cell analysis showed that paeoniflorin markedly reduced transcription factors of Th1 and Th17, inhibited Th1 by 22.2% and 23.1% and Th17 by 43.2% and 25.4% (p < 0.05) in the mesenteric lymph node and Peyer's patches, respectively. Paeoniflorin did not have a significant impact on Th1 and Th17 in the spleen. For the first time, these data suggest that paeoniflorin accumulates in the intestine and primarily modulates Th1 and Th17 responses in the mesenteric lymph nodes and Peyer's patches, rather than in the spleen, to exert anti-arthritis effects.


Assuntos
Artrite Experimental/tratamento farmacológico , Glucosídeos/farmacologia , Mucosa Intestinal/efeitos dos fármacos , Linfonodos/efeitos dos fármacos , Monoterpenos/farmacologia , Nódulos Linfáticos Agregados/efeitos dos fármacos , Células Th1/efeitos dos fármacos , Células Th17/efeitos dos fármacos , Animais , Citocinas/biossíntese , Glucosídeos/farmacocinética , Glucosídeos/uso terapêutico , Mucosa Intestinal/imunologia , Linfonodos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos DBA , Monoterpenos/farmacocinética , Monoterpenos/uso terapêutico , Nódulos Linfáticos Agregados/imunologia , Células Th1/imunologia , Células Th17/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA