RESUMO
PURPOSE: The purpose of this study is to improve the image quality of diffusion-weighted images obtained with a single RF transmit channel 7 T MRI setup using time-resampled frequency-offset corrected inversion (TR-FOCI) pulses to refocus the spins in a twice-refocused spin-echo readout scheme. METHODS: We replaced the conventional Shinnar-Le Roux-pulses in the twice refocused diffusion sequence with TR-FOCI pulses. The slice profiles were evaluated in simulation and experimentally in phantoms. The image quality was evaluated in vivo comparing the Shinnar-Le Roux and TR-FOCI implementation using a b value of 0 and of 1000 s/mm2. RESULTS: The b0 and diffusion-weighted images acquired using the modified sequence improved the image quality across the whole brain. A region of interest-based analysis showed an SNR increase of 113% and 66% for the nondiffusion-weighted (b0) and the diffusion-weighted (b = 1000 s/mm2) images in the temporal lobes, respectively. Investigation of all slices showed that the adiabatic pulses mitigated B 1 + $$ {B}_1^{+} $$ inhomogeneity globally using a conventional single-channel transmission setup. CONCLUSION: The TR-FOCI pulse can be used in a twice-refocused spin-echo diffusion pulse sequence to mitigate the impact of B 1 + $$ {B}_1^{+} $$ inhomogeneity on the signal intensity across the brain at 7 T. However, further work is needed to address SAR limitations.
Assuntos
Algoritmos , Imagem de Difusão por Ressonância Magnética , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Imagens de FantasmasRESUMO
PURPOSE: The purpose of this study is to demonstrate a method for specific absorption rate (SAR) reduction for 2D T2 -FLAIR MRI sequences at 7 T by predicting the required adiabatic radiofrequency (RF) pulse power and scaling the RF amplitude in a slice-wise fashion. METHODS: We used a time-resampled frequency-offset corrected inversion (TR-FOCI) adiabatic pulse for spin inversion in a T2 -FLAIR sequence to improve B1+ homogeneity and calculated the pulse power required for adiabaticity slice-by-slice to minimize the SAR. Drawing on the implicit B1+ inhomogeneity in a standard localizer scan, we acquired 3D AutoAlign localizers and SA2RAGE B1+ maps in 28 volunteers. Then, we trained a convolutional neural network (CNN) to estimate the B1+ profile from the localizers and calculated pulse scale factors for each slice. We assessed the predicted B1+ profiles and the effect of scaled pulse amplitudes on the FLAIR inversion efficiency in oblique transverse, sagittal, and coronal orientations. RESULTS: The predicted B1+ amplitude maps matched the measured ones with a mean difference of 9.5% across all slices and participants. The slice-by-slice scaling of the TR-FOCI inversion pulse was most effective in oblique transverse orientation and resulted in a 1 min and 30 s reduction in SAR induced delay time while delivering identical image quality. CONCLUSION: We propose a SAR reduction technique based on the estimation of B1+ profiles from standard localizer scans using a CNN and show that scaling the inversion pulse power slice-by-slice for FLAIR sequences at 7T reduces SAR and scan time without compromising image quality.
Assuntos
Aprendizado Profundo , Encéfalo , Frequência Cardíaca , Humanos , Imageamento por Ressonância Magnética , Ondas de Rádio , CintilografiaRESUMO
BACKGROUND: Investigation of cortical bone using magnetic resonance imaging is a developing field, which uses short/ultrashort echo time (TE) pulse sequences to quantify bone water content and to obtain indirect information about bone microstructure. PURPOSE: To improve the accuracy of the previously proposed technique of free water T1 quantification and to seek the relationship between cortical bone free water T1 and its mechanical competence. STUDY TYPE: Prospective. SUBJECTS: Twenty samples of bovine tibia bone. FIELD STRENGTH/SEQUENCES: 3.0 T; ultra-fast two-dimensional gradient echo, Radio frequency-spoiled three-dimensional gradient echo. ASSESSMENT: Cortical bone free water T1 was quantified via three different methods: inversion recovery (IR), variable flip angle (VFA), and variable repetition time (VTR). Signal-to-noise ratio was measured by dividing the signal of each segmented sample to background noise. Segmentation was done manually. The effect of noise on T1 quantification was evaluated. Then, the samples were subjected to mechanical compression test to measure the toughness, yield stress, ultimate stress, and Young modulus. STATISTICAL TESTS: All the statistical analysis (Shapiro-Wilk, way analysis of variance, paired t test, Pearson correlation, and Bland-Altman plot) were done using SPSS. RESULTS: Significant difference was found between T1 quantification groups (P < 0.05). Average T1 of each quantification method differed significantly after adding noise (P < 0.05). VFA-T1 values significantly correlated with toughness (r = -0.68, P < 0.05), ultimate stress (r = -0.71, P < 0.05), and yield stress (r = -0.62, P < 0.05). No significant correlation was found between VTR-T1 values and toughness (P = 0.07), ultimate stress (P = 0.47), yield stress (P = 0.30), and Young modulus (P = 0.39). DATA CONCLUSION: Pore water T1 value is associated with bone mechanical competence, and VFA method employing short-TE pulse sequence seems a superior technique to VTR method for this quantification. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: 1.
Assuntos
Imageamento por Ressonância Magnética , Água , Animais , Bovinos , Osso Cortical/diagnóstico por imagem , Humanos , Imagens de Fantasmas , Estudos Prospectivos , Reprodutibilidade dos TestesRESUMO
INTRODUCTION: Cortical bone is affected by metabolic diseases. Some studies have shown that lower cortical bone mineral density (BMD) is related to increases in fracture risk which could be diagnosed by quantitative computed tomography (QCT). Nowadays, hybrid iterative reconstruction-based (HIR) computed tomography (CT) could be helpful to quantify the peripheral bone tissue. A key focus of this paper is to evaluate liquid calibration phantoms for BMD quantification in the tibia and under hybrid iterative reconstruction-based-CT with the different hydrogen dipotassium phosphate (K2HPO4) concentrations phantoms. METHODOLOGY: Four ranges of concentrations of K2HPO4 were made and tested with 2 exposure settings. Accuracy of the phantoms with ash gravimetry and intermediate K2HPO4 concentration as hypothetical patients were evaluated. The correlations and mean differences between measured equivalent QCT BMD and ash density as a gold standard were calculated. Relative percentage error (RPE) in CT numbers of each concentration over a 6-mo period was reported. RESULTS: The correlation values (R2 was close to 1.0), suggested that the precision of QCT-BMD measurements using standard and ultra-low dose settings were similar for all phantoms. The mean differences between QCT-BMD and the ash density for low concentrations (about 93 mg/cm3) were lower than high concentration phantoms with 135 and 234 mg/cm3 biases. In regard to accuracy test for hypothetical patient, RPE was up to 16.1% for the low concentration (LC) phantom for the case of high mineral content. However, the lowest RPE (0.4 to 1.8%) was obtained for the high concentration (HC) phantom, particularly for the high mineral content case. In addition, over 6 months, the K2HPO4 concentrations increased 25% for 50 mg/cm3 solution and 0.7 % for 1300 mg/cm3 solution in phantoms. CONCLUSION: The excellent linear correlations between the QCT equivalent density and the ash density gold standard indicate that QCT can be used with submilisivert radiation dose. We conclude that using liquid calibration phantoms with a range of mineral content similar to that being measured will minimize bias. Finally, we suggest performing BMD measurements with ultra-low dose scan concurrent with iterative-based reconstruction to reduce radiation exposure.
Assuntos
Densidade Óssea , Tomografia Computadorizada por Raios X/métodos , Calibragem , Osso Cortical/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imagens de Fantasmas , Fosfatos , Compostos de Potássio , Tíbia/diagnóstico por imagemRESUMO
Background: Cortical deceleration is the main reason for bone loss at peripheral sites. It was suggested that when peripheral bones were assessed for osteoporosis, management and therapy can be administered early. The main aim of this study was to assess the relationships between the central and peripheral measurements at different skeleton bone sites (spine, femur, forearm, tibia, and calcaneus) with available modalities: DXA, QUS, and MDCT-QCT. Methods: The volunteers recruited in this study did not have any history or evidence of metabolic bone disease. Blood test and DXA measurements were used as inclusion criteria to select 40 healthy participants. The selected volunteers underwent 3 imaging modalities: QCT, DXA, and QUS. DXA-based measurements were made on 3 sites, including spine, femur, and forearm. QCT and QUS measurements were done for distal of tibia and calcaneus bones, respectively. The extracted parameters from the 3 modalities were analyzed using a bivariate (Pearson) correlation (r) in statistical software. Results: The results showed moderate to good correlations between spongy bones in central and peripheral sites from all the modalities. However, there was no correlation between MDCT measures and central bone values. According to correlations between different peripheral sits, aBMD of 33% radius and trabecular vBMD in 38% distal tibia showed weak but significant relationship between peripheral bones (r=-0.342, p=0.044). Conclusion: The findings demonstrated how bones in central and peripheral sites were correlated. Multimodality imaging was used in this group of healthy volunteers. Also, it was found that QCT-based MDCT needs more optimization and requires further investigations.
RESUMO
Purpose To quantify free and bound water components of cortical bone with a model-based numeric approach with use of ultrashort echo time (UTE) magnetic resonance (MR) imaging in vivo in order to introduce a new predictor for age-related deterioration of cortical bone structure. Materials and Methods Human studies were compliant with HIPAA and approved by the institutional review board. Dual-repetition time three-dimensional hybrid-radial UTE imaging was performed, followed by the application of postprocessing algorithms, to quantify free and bound water parameters (concentration [ρ] and longitudinal relaxation time [T1]) of human cortical bone in vivo. The postprocessing algorithms included the decomposition of bulk equations into free- and bound-associated equations and solving resulted inverse problem by using evolutionary strategy methods. To test the validity of the introduced biomarker, it was measured in 40 healthy women by using the proposed method, and associations among parameters were evaluated with the Pearson correlation coefficient. Results The mean free water concentration, bound water concentration, free water T1, and bound water T1 in the recruited population were 5.9%, 19.6%, 306.79 msec, and 162.47 msec, respectively. All reported values were in good agreement with those in the literature. Cortical bone free water T1 (R2 = 0.72) and cortical bone free water concentration (R2 = 0.62) showed strong positive correlations with age. Conclusion The cortical bone free water concentration and free water T1 derived with UTE imaging are good predictors of age-related deterioration of cortical bone structure and are potentially superior to previously introduced measures such as bone water concentration and suppression ratio. © RSNA, 2017.
Assuntos
Osso Cortical/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Adulto , Idoso , Água Corporal , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Adulto JovemRESUMO
PURPOSE: The purpose of our study was to use Dual-TR STE-MR protocol as a clinical tool for cortical bone free water quantification at 1.5 T and validate it by comparing the obtained results (MR-derived results) with dehydration results. METHODS: Human studies were compliant with HIPPA and were approved by the institutional review board. Short Echo Time (STE) MR imaging with different Repetition Times (TRs) was used for quantification of cortical bone free water T1 (T1free) and concentration (ρfree). The proposed strategy was compared with the dehydration technique in seven bovine cortical bone samples. The agreement between the two methods was quantified by using Bland and Altman analysis. Then we applied the technique on a cross-sectional population of thirty healthy volunteers (18F/12M) and examined the association of the biomarkers with age. RESULTS: The mean values of ρfree for bovine cortical bone specimens were quantified as 4.37% and 5.34% by using STE-MR and dehydration techniques, respectively. The Bland and Altman analysis showed good agreement between the two methods along with the suggestion of 0.99% bias between them. Strong correlations were also reported between ρfree (r2 = 0.62) and T1free and age (r2 = 0.8). The reproducibility of the method, evaluated in eight subjects, yielded an intra-class correlation of 0.95. CONCLUSION: STE-MR imaging with dual-TR strategy is a clinical solution for quantifying cortical bone ρfree and T1free.
Assuntos
Osso Cortical/diagnóstico por imagem , Osso Cortical/metabolismo , Imageamento por Ressonância Magnética , Água/metabolismo , Adulto , Animais , Bovinos , Estudos Transversais , Feminino , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Adulto JovemRESUMO
INTRODUCTION: Quantitative computed tomography (QCT) can supplement dual x-ray absorptiometry by enabling geometric and compartmental bone assessments. Whole-body spiral CT scanners are widely available and require a short scanning time of seconds, in contrast to peripheral QCT scanners, which require several minutes of scanning time. This study designed and evaluated the accuracy and precision of a homemade QCT calibration phantom using a whole-body spiral CT scanner. MATERIALS AND METHODS: The QCT calibration phantom consisted of K2HPO4 solutions as reference. The reference material with various concentrations of 0, 50, 100, 200, 400, 1000, and 1200 mg/cc of K2HPO4 in water were used. For designing the phantom, we used the ABAQUS software. RESULTS: The phantoms were used for performance assessment of QCT method through measurement of accuracy and precision errors, which were generally less than 5.1% for different concentrations. The correlation between CT numbers and concentration were close to one (R2 = 0.99). DISCUSSION: Because whole-body spiral CT scanners allow central bone densitometry, evaluating the accuracy and precision for the easy to use calibration phantom may improve the QCT bone densitometry test. CONCLUSION: This study provides practical directions for applying a homemade calibration phantom for bone mineral density quantification in QCT technique.
Assuntos
Imagens de Fantasmas , Tomografia Computadorizada por Raios X/instrumentação , Tomografia Computadorizada por Raios X/normas , Calibragem , Desenho de Equipamento , Reprodutibilidade dos TestesRESUMO
Large pores of human cortical bone (>30µm) are filled with fluids, essentially consisting of water, suggesting that cortical bone free water can be considered as a reliable surrogate measure of cortical bone porosity and hence quality. Signal from such pores can be reliably captured using Short Echo Time (STE) pulse sequence with echo-time in the range of 1-1.5msec (which should be judiciously selected correspond to T2(â) value of free water molecules). Furthermore, it is well-known that cortical bone T1-relaxivity is a function of its geometry, suggesting that cortical bone free water increases with age. In this work, we quantified cortical bone free water longitudinal relaxation time (T1) by a Dual-TR technique using STE pulse sequence. In the sequel, we investigated relationship between STE-derived cortical bone free water T1-values and age in a group of healthy volunteers (thirty subjects covering the age range of 20-70years) at 1.5T. Preliminary results showed that cortical bone free water T1 highly correlates with age (r(2)=0.73, p<0.0001), representing cortical bone free water T1 as a reliable indicator of cortical bone porosity and age-related deterioration. It can be concluded that STE-MRI can be utilized as proper alternative in quantifying cortical bone porosity parameters in-vivo, with the advantages of widespread clinical availability and being cost-effective.