Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Enzyme Inhib Med Chem ; 38(1): 2218602, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37254958

RESUMO

A new series of indole-2-carboxamides 5a-g, 6a-f and pyrido[3,4-b]indol-1-ones 7a and 7b have been developed as new antiproliferative agents that target both wild and mutant type EGFR. The antiproliferative effect of the new compounds was studied. 5c, 5d, 5f, 5 g, 6e, and 6f have the highest antiproliferative activity with GI50 values ranging from 29 nM to 47 nM in comparison to the reference erlotinib (GI50 = 33 nM). Compounds 5d, 5f, and 5 g inhibited EGFRWT with IC50 values ranging from 68 to 85 nM while the GI50 of erlotinib is 80 nM. Moreover, compounds 5f and 5 g had the most potent inhibitory activity against EGFRT790M with IC50 values of 9.5 ± 2 and 11.9 ± 3 nM, respectively, being equivalent to the reference osimertinib (IC50 = 8 ± 2 nM). Compounds 5f and 5 g demonstrated excellent caspase-3 protein overexpression levels of 560.2 ± 5.0 and 542.5 ± 5.0 pg/mL, respectively, being more active than the reference staurosporine (503.2 ± 4.0 pg/mL). they also increase the level of caspase 8, and Bax while decreasing the levels of anti-apoptotic Bcl2 protein. Computational docking studies supported the enzyme inhibition results and provided favourable dual binding modes for both compounds 5f and 5 g within EGFRWT and EGFRT790M active sites. Finally, in silico ADME/pharmacokinetic studies predict good safety and pharmacokinetic profile of the most active compounds.


Assuntos
Antineoplásicos , Neoplasias Pulmonares , Humanos , Receptores ErbB/metabolismo , Cloridrato de Erlotinib/farmacologia , Cloridrato de Erlotinib/uso terapêutico , Antineoplásicos/química , Inibidores de Proteínas Quinases/química , Desenho de Fármacos , Mutação , Neoplasias Pulmonares/tratamento farmacológico , Estaurosporina/farmacologia , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Relação Estrutura-Atividade , Linhagem Celular Tumoral , Simulação de Acoplamento Molecular , Estrutura Molecular
2.
Saudi Pharm J ; 29(11): 1303-1313, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34819792

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is considered one of the most serious public health problems affecting liver. The reported beneficial impact of raspberries on obesity and associated metabolic disorder makes it a suitable candidate against NAFLD. In the current study, the chemical profile of raspberry seed oil (RO) was characterized by analysis of fatty acid and tocopherol contents using high-performance liquid chromatography (HPLC) in addition to the determination of total phenolic and flavonoids. High levels of unsaturated fatty acids, linoleic acid (49.9%), α-linolenic acid (25.98%), and oleic acid (17.6%), along with high total tocopherol content (184 mg/100 gm) were detected in oil. The total phenolic and flavonoid contents in RO were estimated to be 22.40 ± 0.25 mg gallic acid equivalent (GAE)/100 mg oil and 1.34 ± 0.15 mg quercetin (QU)/100 mg, respectively. Anti-NAFLD efficacy of RO at different doses (0.4 and 0.8 mL) in a model of a high-fat diet (HFD) fed rats was assessed by estimating lipid profile, liver enzyme activity, glucose and insulin levels as well as adipokines and inflammatory marker. Peroxisome proliferator-activated receptor γ (PPARγ), which is a molecular target for NAFLD was also tested. Liver histopathology was carried out and its homogenate was used to estimate oxidative stress markers. Consumption of RO significantly improved lipid parameters and hepatic enzyme activities, reduced insulin resistance and glucose levels, significantly ameliorated inflammatory and oxidative stress markers. Furthermore, RO treatment significantly modulated adipokines activities and elevated PPARγ levels. Raspberry seed oil administration significantly improved these HFD induced histopathological alterations. Moreover, a molecular docking study was performed on the identified fatty acids and tocopherols. Among the identified compounds, oleic acid, α-linolenic acid and γ-tocopherol exhibited the highest docking score as PPARγ activator posing them as a potential anti-NAFLD drug leads. Study findings suggest RO as an effective therapeutic candidate for ameliorating NAFLD.

3.
Environ Toxicol Pharmacol ; 103: 104262, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37699441

RESUMO

Acute kidney injury (AKI) caused by Cis is considered one of the most severe adverse effects, which restricts its use and efficacy. This study seeks to examine the potential reno-protective impact of phenolic compound Hydroxytyrosol (HT) against Cis-induced AKI and the possible involvement of the mi-RNA25/Ox-LDL/NOX4 pathway elucidating the probable implicated molecular mechanisms. Forty rats were placed into 5 groups. Group I received saline only. Group II received Cis only. Group III, IV, and V received 20, 50, and 100 mg/kg b.w, of HT, respectively, with Cis delivery. NOX4, Ox-LDL, and gene expression of mi-RNA 25, TNF-α, and HO-1 in renal tissue were detected. HT showed reno-protective effect and significantly upregulated mi-RNA 25 and HO-1 as well as decreased the expression of NOX4, Ox-LDL, and TNF-α. In conclusion, HT may be promising in the fight against Cis-induced AKI through modulation of mi-RNA25/Ox-LDL/NOX4 pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA