Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Appl Opt ; 63(5): 1241-1246, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38437303

RESUMO

We demonstrate a Sagnac-interferometer-based multiwavelength fiber laser with an intensity-dependent loss (IDL) mechanism in the L-band region using a semiconductor optical amplifier (SOA) as the gain medium. The IDL mechanism flattens and stabilizes the multiwavelength spectrum. We also investigate the effect of rotation angles of polarization controllers (PCs) at different polarization devices on multiwavelength performance. At best settings, 31 lasing lines within 3 dB uniformity were generated with an extinction ratio (ER) of 17 dB. Adjusting the half-wave plate of PC1 and PC2 from 0° to 90° shifted the multiwavelength output by 0.01 nm and 0.072 nm, respectively. PC2 adjustment also affects the multiwavelength flatness as compared to PC1. Furthermore, the number of lasing lines and the ER were directly influenced by the SOA current.

2.
Sensors (Basel) ; 22(7)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35408291

RESUMO

In this paper, we studied the possibility of increasing the Brillouin frequency shift (BFS) detection accuracy in distributed fibre-optic sensors by the separate and joint use of different algorithms for finding the spectral maximum: Lorentzian curve fitting (LCF, including the Levenberg-Marquardt (LM) method), the backward correlation technique (BWC) and a machine learning algorithm, the generalized linear model (GLM). The study was carried out on real spectra subjected to the subsequent addition of extreme digital noise. The precision and accuracy of the LM and BWC methods were studied by varying the signal-to-noise ratios (SNRs) and by incorporating the GLM method into the processing steps. It was found that the use of methods in sequence gives a gain in the accuracy of determining the sensor temperature from tenths to several degrees Celsius (or MHz in BFS scale), which is manifested for signal-to-noise ratios within 0 to 20 dB. We have found out that the double processing (BWC + GLM) is more effective for positive SNR values (in dB): it gives a gain in BFS measurement precision near 0.4 °C (428 kHz or 9.3 µÎµ); for BWC + GLM, the difference of precisions between single and double processing for SNRs below 2.6 dB is about 1.5 °C (1.6 MHz or 35 µÎµ). In this case, double processing is more effective for all SNRs. The described technique's potential application in structural health monitoring (SHM) of concrete objects and different areas in metrology and sensing were also discussed.


Assuntos
Tecnologia de Fibra Óptica , Ruído , Algoritmos , Razão Sinal-Ruído
3.
Sensors (Basel) ; 18(7)2018 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-29986438

RESUMO

Monitoring the condition of transformer oil is considered to be one of the preventive maintenance measures and it is very critical in ensuring the safety as well as optimal performance of the equipment. Various oil properties and contents in oil can be monitored such as acidity, furanic compounds and color. The current method is used to determine the color index (CI) of transformer oil produces an error of 0.5 in measurement, has high risk of human handling error, additional expense such as sampling and transportations, and limited samples can be measured per day due to safety and health reasons. Therefore, this work proposes the determination of CI of transformer oil using ultraviolet-to-visible (UV-Vis) spectroscopy. Results show a good correlation between the CI of transformer oil and the absorbance spectral responses of oils from 300 nm to 700 nm. Modeled equations were developed to relate the CI of the oil with the cutoff wavelength and absorbance, and with the area under the curve from 360 nm to 600 nm. These equations were verified with another set of oil samples. The equation that describes the relationship between cutoff wavelength, absorbance and CI of the oil shows higher accuracy with root mean square error (RMSE) of 0.1961.

4.
Spectrochim Acta A Mol Biomol Spectrosc ; 317: 124419, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38733916

RESUMO

The utilization of UV-Vis spectroscopy with amino-functionalized carbon quantum dots (NCQD) as a positive fluorophore reagent for chloride sensing in oil marks a notable advancement in analytical spectroscopy chemistry. This approach streamlines the detection process by eliminating the need for lengthy procedures and pretreatment steps typically associated with chloride detection in edible oil. By incorporating NCQD in chloride detection within the oil matrix, the wavelength analysis transitions from the UV to the visible region. This shift eliminates interference from oil matrix interactions, ensuring more accurate results. Molecular analysis of NCQD reveals significant shifts in its Fourier Transformation Infrared and photoluminescence spectroscopy peaks due to interaction with chloride in edible oil. It has two impressive sensitivity ranges spanning from 0.1-1.0 to 1.0-8.0 ppm, with a value of -0.4656 au. ppm-1 (R2 = 0.998) and -0.0361 au. ppm-1 (R2 = 0.931), respectively, the technique meets regulatory standards while achieving a low limit of detection (LOD) of 0.1 ppm. This places it on par with conventional methods and commercial sensors. The NCQD-UV-Vis spectroscopy method not only enhances the efficiency and accuracy of chloride detection but also holds promise for various industrial applications requiring simple and precise monitoring of chloride levels in oil samples.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA