Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS One ; 19(10): e0308002, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39356693

RESUMO

This paper proposes a model called X-LSTM-EO, which integrates explainable artificial intelligence (XAI), long short-term memory (LSTM), and equilibrium optimizer (EO) to reliably forecast solar power generation. The LSTM component forecasts power generation rates based on environmental conditions, while the EO component optimizes the LSTM model's hyper-parameters through training. The XAI-based Local Interpretable and Model-independent Explanation (LIME) is adapted to identify the critical factors that influence the accuracy of the power generation forecasts model in smart solar systems. The effectiveness of the proposed X-LSTM-EO model is evaluated through the use of five metrics; R-squared (R2), root mean square error (RMSE), coefficient of variation (COV), mean absolute error (MAE), and efficiency coefficient (EC). The proposed model gains values 0.99, 0.46, 0.35, 0.229, and 0.95, for R2, RMSE, COV, MAE, and EC respectively. The results of this paper improve the performance of the original model's conventional LSTM, where the improvement rate is; 148%, 21%, 27%, 20%, 134% for R2, RMSE, COV, MAE, and EC respectively. The performance of LSTM is compared with other machine learning algorithm such as Decision tree (DT), Linear regression (LR) and Gradient Boosting. It was shown that the LSTM model worked better than DT and LR when the results were compared. Additionally, the PSO optimizer was employed instead of the EO optimizer to validate the outcomes, which further demonstrated the efficacy of the EO optimizer. The experimental results and simulations demonstrate that the proposed model can accurately estimate PV power generation in response to abrupt changes in power generation patterns. Moreover, the proposed model might assist in optimizing the operations of photovoltaic power units. The proposed model is implemented utilizing TensorFlow and Keras within the Google Collab environment.


Assuntos
Inteligência Artificial , Previsões , Energia Solar , Previsões/métodos , Modelos Teóricos , Algoritmos , Meio Ambiente
2.
Environ Sci Pollut Res Int ; 29(6): 9318-9340, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34499306

RESUMO

To monitor groundwater salinization due to seawater intrusion (SWI) in the aquifer of the eastern Nile Delta, Egypt, we developed a predictive regression model based on an innovative approach using SWI indicators and artificial intelligence (AI) methodologies. Hydrogeological and hydrogeochemical data of the groundwater wells in three periods (1996, 2007, and 2018) were used as input data for the AI methods. All the studied indicators were enrolled in feature extraction process where the most significant inputs were determined, including the studied year, the distance from the shoreline, the aquifer type, and the hydraulic head. These inputs were used to build four basic AI models to get the optimal prediction results of the used indicators (the base exchange index (BEX), the groundwater quality index for seawater intrusion (GQISWI), and water quality). The machine learning models utilized in this study are logistic regression, Gaussian process regression, feedforward backpropagation neural networks (FFBPN), and deep learning-based long-short-term memory. The FFBPN model achieved higher evaluation results than other models in terms of root mean square error (RMSE) and R2 values in the testing phase, with R2 values of 0.9667, 0.9316, and 0.9259 for BEX, GQISWI, and water quality, respectively. Accordingly, the FFBPN was used to build a predictive model for electrical conductivity for the years 2020 and 2030. Reasonable results were attained despite the imbalanced nature of the dataset for different times and sample sizes. The results show that the 1000 µS/cm boundary is expected to move inland ~9.5 km (eastern part) to ~10 km (western part) to ~12.4 km (central part) between 2018 and 2030. This encroachment would be hazardous to water resources and agriculture unless action plans are taken.


Assuntos
Inteligência Artificial , Água Subterrânea , Egito , Monitoramento Ambiental , Água do Mar
3.
Comput Biol Med ; 135: 104606, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34247134

RESUMO

BACKGROUND AND OBJECTIVE: The impact of diet on COVID-19 patients has been a global concern since the pandemic began. Choosing different types of food affects peoples' mental and physical health and, with persistent consumption of certain types of food and frequent eating, there may be an increased likelihood of death. In this paper, a regression system is employed to evaluate the prediction of death status based on food categories. METHODS: A Healthy Artificial Nutrition Analysis (HANA) model is proposed. The proposed model is used to generate a food recommendation system and track individual habits during the COVID-19 pandemic to ensure healthy foods are recommended. To collect information about the different types of foods that most of the world's population eat, the COVID-19 Healthy Diet Dataset was used. This dataset includes different types of foods from 170 countries around the world as well as obesity, undernutrition, death, and COVID-19 data as percentages of the total population. The dataset was used to predict the status of death using different machine learning regression models, i.e., linear regression (ridge regression, simple linear regularization, and elastic net regression), and AdaBoost models. RESULTS: The death status was predicted with high accuracy, and the food categories related to death were identified with promising accuracy. The Mean Square Error (MSE), Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and R2 metrics and 20-fold cross-validation were used to evaluate the accuracy of the prediction models for the COVID-19 Healthy Diet Dataset. The evaluations demonstrated that elastic net regression was the most efficient prediction model. Based on an in-depth analysis of recent nutrition recommendations by WHO, we confirm the same advice already introduced in the WHO report1. Overall, the outcomes also indicate that the remedying effects of COVID-19 patients are most important to people which eat more vegetal products, oilcrops grains, beverages, and cereals - excluding beer. Moreover, people consuming more animal products, animal fats, meat, milk, sugar and sweetened foods, sugar crops, were associated with a higher number of deaths and fewer patient recoveries. The outcome of sugar consumption was important and the rates of death and recovery were influenced by obesity. CONCLUSIONS: Based on evaluation metrics, the proposed HANA model may outperform other algorithms used to predict death status. The results of this study may direct patients to eat particular types of food to reduce the possibility of becoming infected with the COVID-19 virus.


Assuntos
COVID-19 , Pandemias , Animais , Dieta , Dieta Saudável , Humanos , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA