RESUMO
Pharmacogenomics (PGx) is a promising field of precision medicine where efficacy of drugs is maximized while side effects are minimized for individual patients. Knowledge of the frequency of PGx-relevant variants (pharmacovariants) in the local population is a pre-requisite to informed policy making. Unfortunately, such knowledge is largely lacking from the Middle East. Here, we describe the use of a large clinical exome database (n = 13,473) and HLA haplotypes (n = 64,737) from Saudi Arabia, one of the largest countries in the Middle East, along with previously published data from the local population to ascertain allele frequencies of known pharmacovariants. In addition, we queried another exome database (n = 816) of well-phenotyped research subjects from Saudi Arabia to discover novel candidate variants in known PGx genes (pharmacogenes). Although our results show that only 26% (63/242) of class 1A/1B PharmGKB variants were identified, we estimate that 99.57% of the local population have at least one such variant. This translates to a minimum estimated impact of 9% of medications dispensed by our medical center annually. We also highlight the contribution of rare variants where 71% of the pharmacogenes devoid of common pharmacovariants had at least one potentially deleterious rare variant. Thus, we show that approaches that go beyond the use of commercial PGx kits that have been optimized for other populations should be implemented to ensure universal and equitable access of all members of the local population to personalized prescription practices.
Assuntos
Exoma , Variantes Farmacogenômicos , Humanos , Arábia Saudita , Exoma/genética , Farmacogenética , Medicina de Precisão/métodosRESUMO
Ischemic stroke represents a significant societal burden across the globe. Rare high penetrant monogenic variants and less pathogenic common single nucleotide polymorphisms (SNPs) have been described as being associated with risk of diseases. Genetic studies in Saudi Arabian patients offer a greater opportunity to detect rare high penetrant mutations enriched in these consanguineous populations. We performed whole exome sequencing on 387 ischemic stroke subjects from Saudi Arabian hospital networks with up to 20,230 controls from the Saudi Human Genome Project and performed gene burden analyses of variants in 177 a priori loci derived from knowledge-driven curation of monogenic and genome-wide association studies of stroke. Using gene-burden analyses, we observed significant associations in numerous loci under autosomal dominant and/or recessive modelling. Stroke subjects with modified Rankin Scale (mRSs) above 3 were found to carry greater cumulative polygenic risk score (PRS) from rare variants in stroke genes (standardized PRS mean > 0) compared to the population average (standardized PRS mean = 0). However, patients with mRS of 3 or lower had lower cumulative genetic risk from rare variants in stroke genes (OR (95%CI) = 1.79 (1.29-2.49), p = 0.0005), with the means of standardized PRS at or lower than 0. In conclusion, gene burden testing in Saudi stroke populations reveals a number of statistically significant signals under different disease inheritance models. However, interestingly, stroke subjects with mRS of 3 or lower had lower cumulative genetic risk from rare variants in stroke genes and therefore, determining the potential mRS cutoffs to use for clinical significance may allow risk stratification of this population.
Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Sequenciamento do Exoma , Arábia Saudita , Estudo de Associação Genômica Ampla , Fatores de Risco , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/diagnóstico , Acidente Vascular Cerebral/epidemiologia , Predisposição Genética para DoençaRESUMO
The use of genetic testing within nephrology is increasing and its diagnostic yield depends on the methods utilized, patient selection criteria, and population characteristics. We performed exome sequencing (ES) analysis on 102 chronic kidney disease (CKD) patients with likely genetic kidney disease. Patients had diverse CKD subtypes with/without consanguinity, positive family history, and possible hereditary renal syndrome with extra-renal abnormalities or progressive kidney disease of unknown etiology. The identified genetic variants associated with the observed kidney phenotypes were then confirmed and reported. End-stage kidney disease was reported in 51% of the cohort and a family history of kidney disease in 59%, while known consanguinity was reported in 54%. Pathogenic/likely pathogenic variants were identified in 43 patients with a diagnostic yield of 42%, and clinically associated variants of unknown significance (VUS) were identified in further 21 CKD patients (21%). A total of eight novel predicted pathogenic variants and eight VUS were detected. The clinical utility of ES within the nephrology clinic was demonstrated allowing patient management to be disease-specific. In this cohort, ES detected a diagnostic molecular abnormality in 42% of patients with CKD phenotypes. Positive family history and high rates of consanguinity likely contributed to this high diagnostic yield.
Assuntos
Testes Genéticos , Insuficiência Renal Crônica , Humanos , Arábia Saudita/epidemiologia , Sequenciamento do Exoma , Consanguinidade , Testes Genéticos/métodos , Insuficiência Renal Crônica/diagnóstico , Insuficiência Renal Crônica/epidemiologia , Insuficiência Renal Crônica/genéticaRESUMO
This study aimed to investigate the impact of somatic mutations on various interleukin signaling pathways associated with grade II invasive breast cancer (BC) in Egyptian patients to broaden our understanding of their role in promoting carcinogenesis. Fifty-five grade II invasive BC patients were included in this study. Data for somatic mutations in 45 BC patients were already available from a previous study. Data for somatic mutations of 10 new BC patients were included in the current study. Somatic mutations were identified using targeted next-generation sequencing (NGS) to study their involvement in interleukin signaling pathways. For pathway analysis, we used ingenuity variant analysis (IVA) to identify the most significantly altered pathways. We identified somatic mutations in components of the interleukin-2, interleukin-6, and inter-leukin-7 signaling pathways, including mutations in JAK1, JAK2, JAK3, SOCS1, IL7R, MCL1, BCL2, MTOR, and IL6ST genes. Interestingly, six mutations which were likely to be novel deleterious were identified: two in the SCH1 gene, two in the IL2 gene, and one in each of the IL7R and JUN genes. According to IVA analysis, interleukin 2, interleukin 6, and interleukin 7 signaling pathways were the most altered in 34.5%, 29%, and 23.6% of our BC group, respectively. Our multigene panel sequencing analysis reveals that our BC patients have altered interleukin signaling pathways. So, these results highlight the prominent role of interleukins in the carcinogenesis process and suggest its potential role as promising candidates for personalized therapy in Egyptian patients.
RESUMO
This study aims at identifying common pathogenic somatic mutations at different stages of colorectal carcinogenesis in Egyptian patients. Our cohort included colonoscopic biopsies collected from 120 patients: 20 biopsies from patients with inflammatory bowel disease, 38 from colonic polyp patients, and 62 from patients with colorectal cancer. On top of this, the cohort included 20 biopsies from patients with non-specific mild to moderated colitis. Targeted DNA sequencing using a customized gene panel of 96 colorectal related genes running on the Ion Torrent NGS technology was used to process the samples. Our results revealed that 69% of all cases harbored at least one somatic mutation. Fifty-seven genes were found to carry 232 somatic non-synonymous variants. The most frequently pathogenic somatic mutations were localized in TP53, APC, KRAS, and PIK3CA. In total, 16 somatic mutations were detected in the CRC group and in either the IBD or CP group. In addition, our data showed that 51% of total somatic variants were CRC-specific variants. The average number of CRC-specific variants per sample is 2.4. The top genes carrying CRC-specific mutations are APC, TP53, PIK3CA, FBXW7, ATM, and SMAD4. It seems obvious that TP53 and APC genes were the most affected genes with somatic mutations in all groups. Of interest, 85% and 28% of the APC and TP53 deleterious somatic mutations were located in Exon 14 and Exon 3, respectively. Besides, 37% and 28% of the total somatic mutations identified in APC and TP53 were CRC-specific variants, respectively. Moreover, we identified that, in 29 somatic mutations in 21 genes, their association with CRC patients was unprecedented. Ten detected variants were likely to be novel: six in PIK3CA and four variants in FBXW7. The detected P53, Wnt/ßcatenin, Angiogenesis, EGFR, TGF-ß and Interleukin signaling pathways were the most altered pathways in 22%, 16%, 12%, 10%, 9% and 9% of the CRC patients, respectively. These results would contribute to a better understanding of the colorectal cancer and in introducing personalized therapies for Egyptian CRC patients.
RESUMO
Fetal abnormalities are detected in 3% of all pregnancies and are responsible for approximately 20% of all perinatal deaths. Chromosomal microarray analysis (CMA) and exome sequencing (ES) are widely used in prenatal settings for molecular genetic diagnostics with variable diagnostic yields. In this study, we aimed to determine the diagnostic yield of trio-ES in detecting the cause of fetal abnormalities within a highly consanguineous population. In families with a history of congenital anomalies, a total of 119 fetuses with structural anomalies were recruited and DNA from invasive samples were used together with parental DNA samples for trio-ES and CMA. Data were analysed to determine possible underlying genetic disorders associated with observed fetal phenotypes. The cohort had a known consanguinity of 81%. Trio-ES led to diagnostic molecular genetic findings in 59 fetuses (with pathogenic/likely pathogenic variants) most with multisystem or renal abnormalities. CMA detected chromosomal abnormalities compatible with the fetal phenotype in another 7 cases. Monogenic ciliopathy disorders with an autosomal recessive inheritance were the predominant cause of multisystem fetal anomalies (24/59 cases, 40.7%) with loss of function variants representing the vast majority of molecular genetic abnormalities. Heterozygous de novo pathogenic variants were found in four fetuses. A total of 23 novel variants predicted to be associated with the phenotype were detected. Prenatal trio-ES and CMA detected likely causative molecular genetic defects in a total of 55% of families with fetal anomalies confirming the diagnostic utility of trio-ES and CMA as first-line genetic test in the prenatal diagnosis of multisystem fetal anomalies including ciliopathy syndromes.
Assuntos
Aberrações Cromossômicas , Ciliopatias/genética , Feto/anormalidades , Feto/fisiopatologia , Variação Genética , Estudos de Coortes , Consanguinidade , Feminino , Predisposição Genética para Doença , Testes Genéticos/métodos , Humanos , Análise em Microsséries , Fenótipo , Gravidez , Diagnóstico Pré-Natal/métodos , Sequenciamento do ExomaRESUMO
BACKGROUND: Familial transthyretin (TTR) amyloidosis (ATTR) is an autosomal dominant disease with significant phenotypic heterogeneity. Its prevalence in Saudi Arabia has not previously been investigated. An existing exome variant database of Saudi individuals, sequenced to globally investigate rare diseases in the population, was mined for TTR variants and filtered for missense mutations resulting in single amino acid changes. A total of 13,906 Saudi exomes from unrelated individuals were analyzed blindly. RESULTS: Three TTR variants known to be associated with ATTR amyloidosis were identified. Additionally, three novel TTR mutations were identified. Structural analysis of the three novel variants suggests that at least two could be amyloidogenic. The most common variant associated with amyloidosis was p.Val142Ile (allele frequency 0.001). Further investigation of these variants and their translation to clinical practice may help to diagnose, monitor, and manage patients with ATTR amyloidosis. CONCLUSION: Multiple TTR variants potentially associated with systemic ATTR amyloidosis were identified in the Saudi population. Early diagnosis and intervention, facilitated by familial genetic testing of patients with ATTR amyloidosis, may benefit in the management of this disease. Early diagnosis could be enhanced through inclusion of ATTR variants in existing population-based screening programs.
Assuntos
Neuropatias Amiloides Familiares/genética , Predisposição Genética para Doença , Testes Genéticos , Pré-Albumina/genética , Adolescente , Adulto , Idoso , Neuropatias Amiloides Familiares/epidemiologia , Neuropatias Amiloides Familiares/patologia , Criança , Mineração de Dados , Feminino , Frequência do Gene , Variação Genética/genética , Humanos , Masculino , Pessoa de Meia-Idade , Mutação de Sentido Incorreto/genética , Arábia Saudita/epidemiologia , Adulto JovemRESUMO
BACKGROUND: Paediatric cardiomyopathy is a progressive, often lethal disorder and the most common cause of heart failure in children. Despite its severe outcomes, the genetic aetiology is still poorly characterised. High-throughput sequencing offers a great opportunity for a better understanding of the genetic causes of cardiomyopathy. AIM: The current study aimed to elucidate the genetic background of cardiomyopathy in Egyptian children. METHODS: This hospital-based study involved 68 patients; 58 idiopathic primary dilated cardiomyopathy and 10 left ventricular noncompaction cardiomyopathy. Cardiomyopathy-associated genes were investigated using targeted next-generation sequencing. RESULTS: Consanguinity was positive in 53 and 70% of dilated cardiomyopathy and left ventricular noncompaction cardiomyopathy patients, respectively. Positive family history of cardiomyopathy was present in 28% of dilated cardiomyopathy and 10% of the left ventricular noncompaction cardiomyopathy patients. In 25 patients, 29 rare variants were detected; 2 likely pathogenic variants in TNNI3 and TTN and 27 variants of uncertain significance explaining 2.9% of patients. CONCLUSIONS: The low genetic detection rate suggests that novel genes or variants might underlie paediatric cardiomyopathy in Egypt, especially with the high burden of consanguinity. Being the first national and regional report, our study could be a reference for future genetic testing in Egyptian cardiomyopathy children. Genome-wide tests (whole exome/genome sequencing) might be more suitable than the targeted sequencing to investigate the primary cardiomyopathy patients. Molecular characterisation of cardiomyopathies in different ethnicities will allow for global comparative studies that could result in understanding the pathophysiology and heterogeneity of cardiomyopathies.
Assuntos
Cardiomiopatias , Predisposição Genética para Doença , Cardiomiopatias/diagnóstico , Cardiomiopatias/genética , Criança , Egito/epidemiologia , Testes Genéticos , Humanos , FenótipoRESUMO
BACKGROUND AND AIMS: The clinical consequences of defective primary cilium (ciliopathies) are characterized by marked phenotypic and genetic heterogeneity. Although fibrocystic liver disease is an established ciliopathy phenotype, severe neonatal cholestasis is rarely recognized as such. APPROACH AND RESULTS: We describe seven individuals from seven families with syndromic ciliopathy clinical features, including severe neonatal cholestasis (lethal in one and necessitating liver transplant in two). Positional mapping revealed a single critical locus on chromosome 7. Whole-exome sequencing revealed three different homozygous variants in Tetratricopeptide Repeat Domain 26 (TTC26) that fully segregated with the phenotype. TTC26 (intraflagellar transport [IFT] 56/DYF13) is an atypical component of IFT-B complex, and deficiency of its highly conserved orthologs has been consistently shown to cause defective ciliary function in several model organisms. We show that cilia in TTC26-mutated patient cells display variable length and impaired function, as indicated by dysregulated sonic hedgehog signaling, abnormal staining for IFT-B components, and transcriptomic clustering with cells derived from individuals with closely related ciliopathies. We also demonstrate a strong expression of Ttc26 in the embryonic mouse liver in a pattern consistent with its proposed role in the normal development of the intrahepatic biliary system. CONCLUSIONS: In addition to establishing a TTC26-related ciliopathy phenotype in humans, our results highlight the importance of considering ciliopathies in the differential diagnosis of severe neonatal cholestasis even in the absence of more typical features.
Assuntos
Colestase Intra-Hepática/genética , Doenças do Recém-Nascido/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Repetições de Tetratricopeptídeos/genética , Animais , Ciliopatias , Diagnóstico Diferencial , Proteínas Hedgehog , Humanos , Recém-Nascido , Camundongos , Proteínas Associadas aos Microtúbulos/genética , Mutação , Transporte Proteico/genética , Índice de Gravidade de Doença , Sequenciamento do Exoma/métodosRESUMO
An amendment to this paper has been published and can be accessed via the original article.
RESUMO
BACKGROUND: Ion Torrent is one of the major next generation sequencing (NGS) technologies and it is frequently used in medical research and diagnosis. The built-in software for the Ion Torrent sequencing machines delivers the sequencing results in the BAM format. In addition to the usual SAM/BAM fields, the Ion Torrent BAM file includes technology-specific flow signal data. The flow signals occupy a big portion of the BAM file (about 75% for the human genome). Compressing SAM/BAM into CRAM format significantly reduces the space needed to store the NGS results. However, the tools for generating the CRAM formats are not designed to handle the flow signals. This missing feature has motivated us to develop a new program to improve the compression of the Ion Torrent files for long term archiving. RESULTS: In this paper, we present IonCRAM, the first reference-based compression tool to compress Ion Torrent BAM files for long term archiving. For the BAM files, IonCRAM could achieve a space saving of about 43%. This space saving is superior to what achieved with the CRAM format by about 8-9%. CONCLUSIONS: Reducing the space consumption of NGS data reduces the cost of storage and data transfer. Therefore, developing efficient compression software for clinical NGS data goes beyond the computational interest; as it ultimately contributes to the overall cost reduction of the clinical test. The space saving achieved by our tool is a practical step in this direction. The tool is open source and available at Code Ocean, github, and http://ioncram.saudigenomeproject.com .
Assuntos
Interface Usuário-Computador , Algoritmos , Bases de Dados Genéticas , Genoma Humano , Sequenciamento de Nucleotídeos em Larga Escala/métodos , HumanosRESUMO
Paediatric cardiomyopathy is a progressive and often lethal disorder and the most common cause of heart failure in children. Despite their severe outcomes, their genetic etiology is still poorly characterised. The current study aimed at uncovering the genetic background of idiopathic primary hypertrophic cardiomyopathy in a cohort of Egyptian children using targeted next-generation sequencing. The study included 24 patients (15 males and 9 females) presented to the cardiomyopathy clinic of Cairo University Children's Hospital with a median age of 2.75 (0.5-14) years. Consanguinity was positive in 62.5% of patients. A family history of hypertrophic cardiomyopathy was present in 20.8% of patients. Ten rare variants were detected in eight patients; two pathogenic variants (8.3%) in MBPC3 and MYH7, and eight variants of uncertain significance in MYBPC3, TTN, VCL, MYL2, CSRP3, and RBM20.Here, we report on the first national study in Egypt that analysed sarcomeric and non-sarcomeric variants in a cohort of idiopathic paediatric hypertrophic cardiomyopathy patients using next-generation sequencing. The current pilot study suggests that paediatric hypertrophic cardiomyopathy in Egypt might have a particular genetic background, especially with the high burden of consanguinity. Including the genetic testing in the routine diagnostic service is important for a better understanding of the pathophysiology of the disease, proper patient management, and at-risk detection. Genome-wide tests (whole exome/genome sequencing) might be better than the targeted sequencing approach to test primary hypertrophic cardiomyopathy patients in addition to its ability for the identification of novel genetic causes.
Assuntos
Cardiomiopatia Hipertrófica , Adolescente , Cardiomiopatia Hipertrófica/epidemiologia , Cardiomiopatia Hipertrófica/genética , Criança , Pré-Escolar , Egito/epidemiologia , Feminino , Testes Genéticos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Mutação , Projetos PilotoRESUMO
Nonsense-mediated decay (NMD) is an important process that is best known for degrading transcripts that contain premature stop codons (PTCs) to mitigate their potentially harmful consequences, although its regulatory role encompasses other classes of transcripts as well. Despite the critical role of NMD at the cellular level, our knowledge about the consequences of deficiency of its components at the organismal level is largely limited to model organisms. In this study, we report two consanguineous families in which a similar pattern of congenital anomalies was found to be most likely caused by homozygous loss-of-function mutations in SMG9, encoding an essential component of the SURF complex that generates phospho-UPF1, the single most important step in NMD. By knocking out Smg9 in mice via CRISPR/Cas9, we were able to recapitulate the major features of the SMG9-related multiple congenital anomaly syndrome we observed in humans. Surprisingly, human cells devoid of SMG9 do not appear to have reduction of PTC-containing transcripts but do display global transcriptional dysregulation. We conclude that SMG9 is required for normal human and murine development, most likely through a transcriptional regulatory role, the precise nature of which remains to be determined.
Assuntos
Anormalidades Múltiplas/genética , Mutação , Degradação do RNAm Mediada por Códon sem Sentido/genética , Fosfoproteínas/genética , Adulto , Alelos , Sequência de Aminoácidos , Animais , Estudos de Casos e Controles , Criança , Pré-Escolar , Códon sem Sentido , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Camundongos , Dados de Sequência Molecular , Linhagem , Fosforilação , Polimorfismo de Nucleotídeo Único , RNA Mensageiro , Arábia SauditaRESUMO
PURPOSE: Wolf-Hirschhorn syndrome (WHS) is a genomic disorder with a recognizable dysmorphology profile caused by hemizygosity at 4p16.3. Previous attempts have failed to map the minimal critical locus to a single gene, leaving open the possibility that the core phenotypic components of the syndrome are caused by the combined haploinsufficiency of multiple genes. METHODS: Clinical exome sequencing and "reverse" phenotyping. RESULTS: We identified two patients with de novo truncating variants in WHSC1, which maps to the WHS critical locus. The phenotype of these two individuals is consistent with WHS, which suggests that haploinsufficiency of WHSC1 is sufficient to recapitulate the core phenotype (characteristic facies, and growth and developmental delay) of this classic microdeletion syndrome. CONCLUSION: Our study expands the list of microdeletion syndromes that are solved at the single-gene level, and establishes WHSC1 as a disease gene in humans. Given the severe nature of the reported variants, the full phenotypic expression of WHSC1 may be further expanded by future reports of milder variants.
Assuntos
Deficiências do Desenvolvimento/genética , Predisposição Genética para Doença , Histona-Lisina N-Metiltransferase/genética , Proteínas Repressoras/genética , Síndrome de Wolf-Hirschhorn/genética , Pré-Escolar , Deleção Cromossômica , Hibridização Genômica Comparativa , Deficiências do Desenvolvimento/diagnóstico , Deficiências do Desenvolvimento/patologia , Feminino , Haploinsuficiência/genética , Humanos , Masculino , Fenótipo , Síndrome de Wolf-Hirschhorn/diagnóstico , Síndrome de Wolf-Hirschhorn/patologiaRESUMO
PURPOSE: Congenital microcephaly (CM) is an important birth defect with long term neurological sequelae. We aimed to perform detailed phenotypic and genomic analysis of patients with Mendelian forms of CM. METHODS: Clinical phenotyping, targeted or exome sequencing, and autozygome analysis. RESULTS: We describe 150 patients (104 families) with 56 Mendelian forms of CM. Our data show little overlap with the genetic causes of postnatal microcephaly. We also show that a broad definition of primary microcephaly -as an autosomal recessive form of nonsyndromic CM with severe postnatal deceleration of occipitofrontal circumference-is highly sensitive but has a limited specificity. In addition, we expand the overlap between primary microcephaly and microcephalic primordial dwarfism both clinically (short stature in >52% of patients with primary microcephaly) and molecularly (e.g., we report the first instance of CEP135-related microcephalic primordial dwarfism). We expand the allelic and locus heterogeneity of CM by reporting 37 novel likely disease-causing variants in 27 disease genes, confirming the candidacy of ANKLE2, YARS, FRMD4A, and THG1L, and proposing the candidacy of BPTF, MAP1B, CCNH, and PPFIBP1. CONCLUSION: Our study refines the phenotype of CM, expands its genetics heterogeneity, and informs the workup of children born with this developmental brain defect.
Assuntos
Microcefalia/genética , Microcefalia/fisiopatologia , Adulto , Criança , Pré-Escolar , Nanismo/genética , Feminino , Genômica/métodos , Genótipo , Humanos , Lactente , Recém-Nascido , Masculino , Mutação/genética , Linhagem , Fenótipo , Sequenciamento do Exoma/métodosRESUMO
PURPOSE: Establishing links between Mendelian phenotypes and genes enables the proper interpretation of variants therein. Autozygome, a rich source of homozygous variants, has been successfully utilized for the high throughput identification of novel autosomal recessive disease genes. Here, we highlight the utility of the autozygome for the high throughput confirmation of previously published tentative links to diseases. METHODS: Autozygome and exome analysis of patients with suspected Mendelian phenotypes. All variants were classified according to the American College of Medical Genetics and Genomics guidelines. RESULTS: We highlight 30 published candidate genes (ACTL6B, ADAM22, AGTPBP1, APC, C12orf4, C3orf17 (NEPRO), CENPF, CNPY3, COL27A1, DMBX1, FUT8, GOLGA2, KIAA0556, LENG8, MCIDAS, MTMR9, MYH11, QRSL1, RUBCN, SLC25A42, SLC9A1, TBXT, TFG, THUMPD1, TRAF3IP2, UFC1, UFM1, WDR81, XRCC2, ZAK) in which we identified homozygous likely deleterious variants in patients with compatible phenotypes. We also identified homozygous likely deleterious variants in 18 published candidate genes (ABCA2, ARL6IP1, ATP8A2, CDK9, CNKSR1, DGAT1, DMXL2, GEMIN4, HCN2, HCRT, MYO9A, PARS2, PLOD3, PREPL, SCLT1, STX3, TXNRD2, WIPI2) although the associated phenotypes are sufficiently different from the original reports that they represent phenotypic expansion or potentially distinct allelic disorders. CONCLUSIONS: Our results should facilitate the timely relabeling of these candidate disease genes in relevant databases to improve the yield of clinical genomic sequencing.
Assuntos
Doença/genética , Genômica/métodos , Análise de Sequência de DNA/métodos , Variação Biológica da População/genética , Criança , Pré-Escolar , Diagnóstico , Técnicas e Procedimentos Diagnósticos , Feminino , Testes Genéticos/normas , Variação Genética , Genótipo , Hereditariedade/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Homozigoto , Humanos , Lactente , Recém-Nascido , Masculino , Mutação , FenótipoRESUMO
Defects in the peroxisomes biogenesis and/or function result in peroxisomal disorders. In this study, we describe the largest Arab cohort to date (72 families) of clinically, biochemically and molecularly characterized patients with peroxisomal disorders. At the molecular level, we identified 43 disease-causing variants, half of which are novel. The founder nature of many of the variants allowed us to calculate the minimum disease burden for these disorders in our population ~1:30 000, which is much higher than previous estimates in other populations. Clinically, we found an interesting trend toward genotype/phenotype correlation in terms of long-term survival. Nearly half (40/75) of our peroxisomal disorders patients had documented survival beyond 1 year of age. Most unusual among the long-term survivors was a multiplex family in which the affected members presented as adults with non-specific intellectual disability and epilepsy. Other unusual presentations included the very recently described peroxisomal fatty acyl-CoA reductase 1 disorder as well as CRD, spastic paraparesis, white matter (CRSPW) syndrome. We conclude that peroxisomal disorders are highly heterogeneous in their clinical presentation. Our data also confirm the demonstration that milder forms of Zellweger spectrum disorders cannot be ruled out by the "gold standard" very long chain fatty acids assay, which highlights the value of a genomics-first approach in these cases.
Assuntos
Árabes , Transtornos Peroxissômicos/epidemiologia , Transtornos Peroxissômicos/etiologia , Árabes/genética , Biomarcadores , Encéfalo/anormalidades , Encéfalo/diagnóstico por imagem , Estudos de Coortes , Consanguinidade , Efeitos Psicossociais da Doença , Gerenciamento Clínico , Suscetibilidade a Doenças , Fácies , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Imageamento por Ressonância Magnética , Masculino , Mutação , Linhagem , Transtornos Peroxissômicos/diagnóstico , Transtornos Peroxissômicos/terapia , Fenótipo , Vigilância da População , PrognósticoRESUMO
BACKGROUND: A reciprocal relationship between oral health and systemic disease, such as type 2 diabetes, has been suggested, whereby a systemic disease is a predisposing factor for oral infection. If the infection occurs, it in turn aggravates the progression of the systemic disease. According to several studies, certain constituents of the oral microbiota are linked to diabetes, metabolic syndrome, and obesity. In the current study, we aimed to compare the microbial diversity and population structure of the oral microbiota of normoglycemic, impaired glucose tolerance (IGT), and diabetes patients. METHODOLOGY: The study followed a case-control design, with 15 type 2 diabetes patients, 10 IGT subjects, and 19 control subjects. All subjects underwent assessment of periodontitis and oral health. Saliva samples were collected, and DNA was isolated from these samples. Hypervariable regions of the 16Sr RNA gene were amplified and sequenced, and the generated sequences underwent bioinformatics analysis. Statistical analysis and diversity index calculations were made using the statistical software R, vegan R-package, and Past3.20 software. RESULTS: Overall, 551 operational taxonomic units (OTUs) were identified. Based on OTU analysis, a clear reduction of the number of species was observed in both IGT (412) and diabetes groups (372) compared with that in the normoglycemic group (502). This was associated with a similar pattern of reduction of biological diversity among the three groups. The phylogenetic diversity (PD-SBL) value in the normoglycemic group was higher than that in the diabetes group. The diabetes group exhibited the highest evenness value and the highest microbiota bacterial pathogenic content. CONCLUSION: A clear reduction of the biological and phylogenetic diversity was apparent in the diabetes and pre-diabetes oral microbiota in comparison with that in the normoglycemic oral microbiota. However, this was associated with an increase in the pathogenic content of the hyperglycemic microbiota. The results of this study may aid to better understanding of the directionality of the mysterious reciprocal relationship.
Assuntos
Bactérias/classificação , Biodiversidade , Diabetes Mellitus Tipo 2/complicações , Microbiota , Boca/microbiologia , Filogenia , Adulto , Bactérias/genética , Bactérias/isolamento & purificação , Estudos de Casos e Controles , Biologia Computacional , DNA Bacteriano/isolamento & purificação , Feminino , Intolerância à Glucose/complicações , Humanos , Masculino , Microbiota/genética , Pessoa de Meia-Idade , Saúde Bucal , Índice Periodontal , Periodontite/microbiologia , RNA Ribossômico 16S/genética , Saliva/microbiologia , Arábia Saudita , Análise de Sequência de DNARESUMO
BACKGROUND: Human pegivirus (HPgV) is structurally similar to hepatitis C virus (HCV) and was discovered 20 years ago. Its distribution, natural history and exact rule of this viral group in human hosts remain unclear. Our aim was to determine, by deep next-generation sequencing (NGS), the entire genome sequence of HPgV that was discovered in an Egyptian patient while analyzing HCV sequence from the same patient. We also inspected whether the co-infection of HCV and HPgV will affect the patient response to HCV viral treatment. To the best of our knowledge, this is the first report for a newly isolated HPgV in an Egyptian patient who is co-infected with HCV. CASE PRESENTATION: The deep Next Generation Sequencing (NGS) technique was used to detect HCV sequence in hepatitis C patient's plasma. The results revealed the presence of HPgV with HCV. This co-infection was confirmed using conventional PCR of the HPgV 5' untranslated region. The patient was then subjected to direct-acting-antiviral treatment (DAA). At the end of the treatment, the patient showed a good response to the HCV treatment (i.e., no HCV-RNA was detected in the plasma), while the HPgV-RNA was still detected. Sequence alignment and phylogenetic analyses demonstrated that the detected HPgV was a novel isolate and was not previously published. CONCLUSION: We report a new variant of HPgV in a patient suffering from hepatitis C viral infection.
Assuntos
Coinfecção/virologia , Infecções por Flaviviridae/virologia , Flaviviridae/genética , Flaviviridae/isolamento & purificação , Genoma Viral/genética , Hepacivirus/isolamento & purificação , Hepatite C/virologia , Adulto , Antivirais/uso terapêutico , Coinfecção/diagnóstico , Coinfecção/tratamento farmacológico , Egito , Infecções por Flaviviridae/diagnóstico , Infecções por Flaviviridae/tratamento farmacológico , Variação Genética , Hepacivirus/efeitos dos fármacos , Hepacivirus/genética , Hepatite C/diagnóstico , Hepatite C/tratamento farmacológico , Humanos , Masculino , Filogenia , RNA Viral/sangue , RNA Viral/genética , Resultado do TratamentoRESUMO
The post-translational modification of proteins through the addition of UFM1, also known as ufmylation, plays a critical developmental role as revealed by studies in animal models. The recent finding that biallelic mutations in UBA5 (the E1-like enzyme for ufmylation) cause severe early-onset encephalopathy with progressive microcephaly implicates ufmylation in human brain development. More recently, a homozygous UFM1 variant was proposed as a candidate aetiology of severe early-onset encephalopathy with progressive microcephaly. Here, we establish a locus for severe early-onset encephalopathy with progressive microcephaly based on two families, and map the phenotype to a novel homozygous UFM1 mutation. This mutation has a significantly diminished capacity to form thioester intermediates with UBA5 and with UFC1 (the E2-like enzyme for ufmylation), with resulting impaired ufmylation of cellular proteins. Remarkably, in four additional families where eight children have severe early-onset encephalopathy with progressive microcephaly, we identified two biallelic UFC1 mutations, which impair UFM1-UFC1 intermediate formation with resulting widespread reduction of cellular ufmylation, a pattern similar to that observed with UFM1 mutation. The striking resemblance between UFM1- and UFC1-related clinical phenotype and biochemical derangements strongly argues for an essential role for ufmylation in human brain development. The hypomorphic nature of UFM1 and UFC1 mutations and the conspicuous depletion of biallelic null mutations in the components of this pathway in human genome databases suggest that it is necessary for embryonic survival, which is consistent with the embryonic lethal nature of knockout models for the orthologous genes.