Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Microb Pathog ; 196: 106980, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39326805

RESUMO

Avian migration is an intrinsic biological phenomenon that involves trans-boundary movements to evade adverse ecological circumstances. During migration, avian gut bacterial taxa may serve as a potential source of bacterial dissemination via fecal contamination at stop-over sites. Therefore, bacterial taxa composition as well as diversities were investigated employing 16S rRNA sequencing in fecal samples collected from flocks of seven migratory avian species visiting southern districts of Khyber Pakhtunkhwa, Pakistan. The analysis revealed that Grus virgo exhibits the highest alpha diversity, followed by Aythya ferina while G. grus reflects lowest diversity among all the migratory avian fecal samples. The findings depicted significant variations in the bacterial beta diversities of migratory avifauna. At phylum level, Firmicutes, Proteobacteria, and Actinobacteriota showed the highest relative abundance in Plegadis falcinellus, Chlamydotis undulata and Aythya ferina respectively. Further exploration within phyla elucidates finer-scale taxonomic differences at the family and genus levels. This study identified potential pathogenic bacteria such as Staphylococcus, Streptococcus, Enterococcus, Proteus, Clostridium sensu stricto 1, Fusobacterium and Escherichia that offers valuable insight into the microbiological hazards associated with migratory birds. Although pathogenicity was not directly assessed, the observed relative abundance of opportunistic bacterial genera suggests continuous surveillance of gut bacterial community during migration to safeguard avian biodiversity and mitigate escalating threats of infection emergence and dissemination.


Assuntos
Migração Animal , Bactérias , Aves , Fezes , Microbioma Gastrointestinal , Filogenia , RNA Ribossômico 16S , Animais , RNA Ribossômico 16S/genética , Fezes/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Aves/microbiologia , Microbioma Gastrointestinal/genética , Paquistão , DNA Bacteriano/genética , Biodiversidade , Análise de Sequência de DNA
2.
Front Pharmacol ; 15: 1347551, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38434704

RESUMO

Introduction: Essential oil‒based nanoemulsions (NEs) are the subjects of extensive investigation due to their potential to address a variety of oral health issues. NEs are delivery systems that improve lipid medicine solubility and distribution to intended sites. The goal of the current study was to create and enhance a self-nanoemulsifying drug delivery paradigm based on calendula oil (CO) and decorated with chitosan (CS) that could deliver posaconazole (PSZ) for the treatment of gingivitis. Method: Employing a response-surface Box‒Behnken design, PSZ-CO-CS NEs were created with varying amounts of PSZ (10, 15, and 20 mg), percentages of CO (6%, 12%, and 18%), and percentages of CS (0.5%, 1.5%, and 2.5%). Results and conclusion: The optimized formulation resulted in a 22-mm bacterial growth suppression zone, 25-mm fungal growth inhibition zone, droplet sizes of 110 nm, and a viscosity of 750 centipoise (cP). Using the appropriate design, the ideal formulation was produced; it contained 20 mg of PSZ, 18% of CO, and 1.35% of CS. Furthermore, the optimal formulation had a more controlled drug release, larger inhibition zones of bacterial and fungal growth, and desirable rheologic properties. Additionally, the optimized formulation substantially lowered the ulcer index in rats when tested against other formulations. Thus, this investigation showed that PSZ-CO-CS NEs could provide efficient protection against microbially induced gingivitis.

3.
Pharmaceutics ; 15(9)2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37765310

RESUMO

In-depth studies on essential oil-based nanoemulsions (NEs) have centered on a variety of oral health issues. NEs improve the delivery of nonpolar active agents to sites and thereby boost the dissolution and distribution of the agents. Metronidazole-peppermint oil-tranexamic acid self-nanoemulsifying drug delivery systems (MZ-PO-TX-SNEDDS) were created and loaded into novel lozenges to act as antifungal, hemostatic, antimicrobial, and analgesic dosage forms after dental extractions. The design-of-experiments approach was used in creating them. To generate the NEs, different concentrations of MZ-PO (240, 180, and 120 mg), 2% TX (600, 450, and 300 mg), and Smix1:1 (600, 400, and 200 mg) were used. The ideal formulation had serum levels of 1530 U/mL of interleukin-6, a minimal inhibitory concentration against bacteria of 1.5 µg/mL, a droplet size of 96 nm, and a blood coagulation time of 16.5 min. Moreover, the produced NE offered better MZ release. The adopted design was used to produce the ideal formulation; it contained 240 mg of MZ-PO, 600 mg of 2% TX, and 600 mg of Smix1:1. It was incorporated into lozenges with acceptable characteristics and an improved capability for drug release. These lozenges had reasonable coagulation times, IL-6 serum levels, and MIC values. All of these characteristics are desirable for managing symptoms following tooth extractions. Therefore, these lozenges loaded with MZ-PO-TX-SNEDDs might be considered a beneficial paradigm for relieving complications encountered after tooth extractions.

4.
Front Pharmacol ; 14: 1286133, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37915413

RESUMO

Introduction: The health, development, and/or survival of a newborn can be impacted by congenital abnormalities such as cleft lip (CLP) and palate, one of alveolar bone defects that emerge thru pregnancy. Therefore, the primary purpose of this study is to use phospholipids-based phase separation in-situ gel (PPSG) in combination with bone morphogenetic protein-2 nanoemulsion (BMP-2-NE) to aid repairing alveolar bone defects. Methods: To investigate how formulation parameters, such as the concentrations of BMP-2 aqueous solution, LauroglycolTM FCC, and Labrafac PG oil, affect NE qualities including droplet size and stability index, an l-optimal co-ordinate exchange statistical design was opted. Injectable PPSG with the best NE formulation was tested for viscosity characteristics, gel strength, water absorption, and in-vitro BMP-2 release. In rabbits, the percentage of BMP-2 that was still in the maxilla after 14 days was assessed. Results: Collected results revealed that the droplet size and stability index of optimal NE were discovered to be 68 2.0 nm and 96 1.3%, respectively. When mixed with water, optimal BMP-2 NE loaded PPSG became viscous and reached a gel strength of 41 s, which is adequate for injectable in-situ gels. In comparison to BMP-2 solution loaded in-situ gel, the in-vivo studies indicated that the newly created BMP-2 NE loaded PPSG produced a sustained and controlled release of BMP-2 that continued for 336 h (14 days). Further, 8% of the BMP-2 was still entrapped and not completely dissolved after 14 days, thus, created formulation allowed a higher percentage of BMP-2 to remain in rabbits' maxilla for longer time. Conclusion: PPSG that has been loaded with BMP-2 NE may therefore be a promising, fruitful, and less painful paradigm for the noninvasive therapy of CLP with significant effect and extended release.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA