Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(47): 25518-25522, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-37963184

RESUMO

High impact recent articles have reported on the existence of a liquid-liquid (L-L) phase transition as a function of both pressure and temperature in ionic liquids (ILs) containing the popular trihexyltetradecylphosphonium cation (P666,14+), sometimes referred to as the "universal liquifier". The work presented here reports on the structural-dynamic pathway from liquid to glass of the most well-studied IL comprising the P666,14+ cation. We present experimental and computational evidence that, on cooling, the path from the room-temperature liquid to the glass state is one of separate structural-dynamic changes. The first stage involves the slowdown of the charge network, while the apolar subcomponent is fully mobile. A second, separate stage entails the slowdown of the apolar domain. Whereas it is possible that these processes may be related to the liquid-liquid and glass transitions, more research is needed to establish this conclusively.

2.
bioRxiv ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38854128

RESUMO

Phosphatidylinositol phosphates (PIPs) are a family of seven different eukaryotic membrane lipids that have a large role in cell viability, despite their minor concentration in eukaryotic cellular membranes. PIPs tightly regulate cellular processes such as cellular growth, metabolism, immunity, and development through direct interactions with partner proteins. Understanding the biophysical properties of PIPs in the complex membrane environment is important to understand how PIPs selectively regulate a partner protein. Here we investigate the structure and dynamics of PIP3 in lipid bilayers that are simplified models of the natural membrane environment. We probe the effects of the anionic lipid phosphatidylserine (PS) and the divalent cation Ca 2+ . We use solution and solid-state 1 H, 31 P, and 13 C NMR all at natural abundance combined with MD simulations to characterize the structure and dynamics of PIPs. 1 H and 31 P 1D spectra show good resolution at high temperatures with isolated peaks in the headgroup, interfacial, and bilayer regions. Site specific assignment of these 1D reporters were made and used to measure the effects of Ca 2+ and PS. In particular, the resolved 31 P signals of the PIP3 headgroup allowed for extremely well localized information about PIP3 phosphate dynamics, which the MD simulations were able to help explain. Cross polarization kinetics provided additional site-specific dynamics measurements for the PIP3 headgroups.

3.
J Phys Chem B ; 127(33): 7384-7393, 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37556231

RESUMO

We utilized the momentum transfer (Q)-dependence of quasi-elastic neutron scattering (QENS) to measure the dynamics of water and ethanol confined in graphene oxide (GO) powder or membranes at different temperatures and in different orientations. We found reduced diffusivities (up to 30% in the case of water) and a depression of dynamic transition temperatures. While water showed near Arrhenius behavior with an almost bulk-like activation barrier in a temperature range of 280-310 K, the diffusivity of ethanol showed little temperature dependence. For both water and ethanol, we found evidence for immobile and mobile fractions of the confined liquid. The mobile fraction exhibited jump diffusion, with a jump length consistent with the expected average spacing of hydroxide groups in the GO surfaces. From anisotropy measurements, we found weak anisotropy in the diffusivity of the mobile species and in the fraction and geometry of immobile species.

4.
J Phys Chem B ; 127(28): 6342-6353, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37432303

RESUMO

Ionic liquid viscosity is one of the most important properties to consider for practical applications. Yet, the connection between local structure and viscosity remains an open question. This article explores the structural origin of differences in the viscosity and viscoelastic relaxation across several ionic liquids, including cations with alkyl, ether, and thioether tails, of the imidazolium and pyrrolidinium families coupled with the NTf2- anion. In all cases, for the systems studied here, we find that pyrrolidinium-based ions are "harder" than their imidazolium-based counterparts. We make a connection between the chemical concept of hardness vs softness and specific structural and structural dynamic quantities that can be derived from scattering experiments and simulations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA