RESUMO
Metal-organic frameworks (MOFs) are attracting increasing attention as adsorbents of contaminants of emerging concern that are difficult to remove by conventional processes. This paper examines how functional groups covering the pore walls of phosphinate-based MOFs affect the adsorption of specific pharmaceutical pollutants (diclofenac, cephalexin, and sulfamethoxazole) and their hydrolytic stability. New structures, isoreticular to the phosphinate MOF ICR-7, are presented. The phenyl ring facing the pore wall of the presented MOFs is modified with dimethylamino groups (ICR-8) and ethyl carboxylate groups (ICR-14). These functionalized MOFs were obtained from two newly synthesized phosphinate linkers containing the respective functional groups. The presence of additional functional groups resulted in higher affinity toward the tested pollutants compared to ICR-7 or activated carbon. However, this modification also comes with a reduced adsorption capacity. Importantly, the introduction of the functional groups enhanced the hydrolytic stability of the MOFs.
RESUMO
Cadmium, Mn, and Zn are mobilised by plants commonly growing in floodplains, most notably willows (Salix) and alder (Alnus). These plants accumulate unwanted elements (Cd) or excessive element concentrations (Mn, Zn) in their foliage, thus introducing them into the food web and enriching them in floodplain surface by litterfall. In floodplain of the Litavka River in Czechia, contaminated by historical mining activities, up to 100 mg kg-1 Cd and up to several thousand mg kg-1 Mn and Zn are present in willow leaves in autumn, probably close maxima for sustainable plant growth. Willows and alders show seasonal growth of their foliar Mn and Zn. The willow leaves showed Cd/Zn larger than contaminated fluvisol of the Litavka River. Senesced willow leaves thus contribute to spread of risk elements from historically contaminated floodplains back to river water even without the bank erosion. Alders and willows alter geochemical cycles of Cd, Mn, and Zn in fluvial systems and increase Cd/Zn and Mn/Fe concentration ratios and Cd and Mn concentrations in fluvially transported particles relative to global geochemical averages as well as relative to floodplain sediments. Willows, in particular Salix fragilis L., S. aurita L, and S. cinerea L are particularly important "plant pumps". Other common floodplain plants, such as bird cherry (Prunus padus L.) and herbaceous plants (common nettle, Urtica dioica L. and grasses, Poaceae) do not contribute to those phenomena.
Assuntos
Metais Pesados , Salix , Poluentes do Solo , Cádmio , Folhas de Planta/química , Zinco , Plantas , Poluentes do Solo/análiseRESUMO
Two types of CeO2 nanoparticles (CeNPs) prepared by low-temperature (<100 °C) precipitation methods in water were successfully immobilized in a matrix of electrospun PA6 nanofibers. The colloidal solutions of CeNPs in AcOH were directly mixed with the polymer solution before the needle electrospinning process, thereby achieving their good dispersion in the nanofibers. CeNPs embedded in the structure and on the surface of nanofibers exposing their reactive surfaces showed robust dephosphorylation catalytic activity, as demonstrated by monitoring the hydrolytic cleavage of three phosphodiester molecules (p-NP-TMP, p-NPPC, BNPP) in water by the HPLC method. This procedure allowed us to study the kinetics and mechanism of the hydrolytic cleavage and the ability of immobilized CeNPs to cleave different types of P-O bonds. One of the main hydrolysis products, p-nitrophenol, was effectively adsorbed on PA6 nanofibers, which may allow the selective separation of the degradation products after hydrolysis.