RESUMO
The human lung cellular portfolio, traditionally characterized by cellular morphology and individual markers, is highly diverse, with over 40 cell types and a complex branching structure highly adapted for agile airflow and gas exchange. While constant during adulthood, lung cellular content changes in response to exposure, injury, and infection. Some changes are temporary, but others are persistent, leading to structural changes and progressive lung disease. The recent advance of single-cell profiling technologies allows an unprecedented level of detail and scale to cellular measurements, leading to the rise of comprehensive cell atlas styles of reporting. In this review, we chronical the rise of cell atlases and explore their contributions to human lung biology in health and disease.
Assuntos
Pulmão , Humanos , Adulto , Pulmão/fisiologiaRESUMO
Rationale: Fibrotic hypersensitivity pneumonitis is a debilitating interstitial lung disease driven by incompletely understood immune mechanisms. Objectives: To elucidate immune aberrations in fibrotic hypersensitivity pneumonitis in single-cell resolution. Methods: Single-cell 5' RNA sequencing was conducted on peripheral blood mononuclear cells and bronchoalveolar lavage cells obtained from 45 patients with fibrotic hypersensitivity pneumonitis, 63 idiopathic pulmonary fibrosis, 4 non-fibrotic hypersensitivity pneumonitis, and 36 healthy controls in the United States and Mexico. Analyses included differential gene expression (Seurat), transcription factor activity imputation (DoRothEA-VIPER), and trajectory analyses (Monocle3/Velocyto-scVelo-CellRank). Measurements and Main Results: Overall, 501,534 peripheral blood mononuclear cells from 110 patients and controls and 88,336 bronchoalveolar lavage cells from 19 patients were profiled. Compared to controls, fibrotic hypersensitivity pneumonitis has elevated classical monocytes (adjusted-p=2.5e-3) and are enriched in CCL3hi/CCL4hi and S100Ahi classical monocytes (adjusted-p<2.2e-16). Trajectory analyses demonstrate that S100Ahi classical monocytes differentiate into SPP1hi lung macrophages associated with fibrosis. Compared to both controls and idiopathic pulmonary fibrosis, fibrotic hypersensitivity pneumonitis patient cells are significantly enriched in GZMhi cytotoxic T cells. These cells exhibit transcription factor activities indicative of TGFß and TNFα/NFκB pathways. These results are publicly available at https://ildimmunecellatlas.org. Conclusions: Single-cell transcriptomics of fibrotic hypersensitivity pneumonitis patients uncovered novel immune perturbations, including previously undescribed increases in GZMhi cytotoxic CD4+ and CD8+ T cells - reflecting this disease's unique inflammatory T-cell driven nature - as well as increased S100Ahi and CCL3hi/CCL4hi classical monocytes also observed in idiopathic pulmonary fibrosis. Both cell populations may guide the development of new biomarkers and therapeutic interventions.
RESUMO
Animal tissues comprise diverse cell types. However, the mechanisms controlling the number of each cell type within tissue compartments remain poorly understood. Here, we report that different cell types utilize distinct strategies to control population numbers. Proliferation of fibroblasts, stromal cells important for tissue integrity, is limited by space availability. In contrast, proliferation of macrophages, innate immune cells involved in defense, repair, and homeostasis, is constrained by growth factor availability. Examination of density-dependent gene expression in fibroblasts revealed that Hippo and TGF-ß target genes are both regulated by cell density. We found YAP1, the transcriptional coactivator of the Hippo signaling pathway, directly regulates expression of Csf1, the lineage-specific growth factor for macrophages, through an enhancer of Csf1 that is specifically active in fibroblasts. Activation of YAP1 in fibroblasts elevates Csf1 expression and is sufficient to increase the number of macrophages at steady state. Our data also suggest that expression programs in fibroblasts that change with density may result from sensing of mechanical force through actin-dependent mechanisms. Altogether, we demonstrate that two different modes of population control are connected and coordinated to regulate cell numbers of distinct cell types. Sensing of the tissue environment may serve as a general strategy to control tissue composition.
Assuntos
Proliferação de Células , Fibroblastos , Macrófagos , Animais , Contagem de Células , Fibroblastos/fisiologia , Via de Sinalização Hippo , Macrófagos/citologia , Macrófagos/fisiologia , Fator de Crescimento Transformador beta/metabolismo , Proteínas de Sinalização YAP/metabolismoRESUMO
Mast-cell expressed membrane protein-1 (MCEMP1) is higher in patients with idiopathic pulmonary fibrosis (IPF) with an increased risk of death. Here we aimed to establish the mechanistic role of MCEMP1 in pulmonary fibrosis. We identified increased MCEMP1 expression in classical monocytes and alveolar macrophages in IPF compared with controls. MCEMP1 is upregulated by transforming growth factor beta (TGFß) at the mRNA and protein levels in monocytic leukemia THP-1 cells. TGFß-mediated MCEMP1 upregulation results from the cooperation of SMAD3 and SP1 via concomitant binding to SMAD3/SP1 cis-regulatory elements within the MCEMP1 promoter. We also found that MCEMP1 regulates TGFß-mediated monocyte chemotaxis, adhesion, and migration. Our results suggest that MCEMP1 may regulate the migration and transition of monocytes to monocyte-derived alveolar macrophages during pulmonary fibrosis development and progression.NEW & NOTEWORTHY MCEMP1 is highly expressed in circulating classical monocytes and alveolar macrophages in IPF, is regulated by TGFß, and participates in the chemotaxis, adhesion, and migration of circulating monocytes by modulating the effect of TGFß in RHO activity.
Assuntos
Fibrose Pulmonar Idiopática , Macrófagos Alveolares , Humanos , Macrófagos Alveolares/metabolismo , Monócitos/metabolismo , Proteínas de Membrana/metabolismo , Quimiotaxia , Mastócitos/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/metabolismoRESUMO
Introduction IPF is a devastating lung disease with limited therapeutic options. FGFR4 is a known receptor for several paracrine Fibroblast growth factors (FGFs). FGFR4 is also the main receptor for FGF19, an endocrine FGF that was demonstrated by our group to have anti-fibrotic properties in the lung. We aimed to determine whether FGFR4 could modulate pulmonary fibrogenesis. Methods We assessed FGFR4 mRNA and protein levels in IPF and control lungs. In vitro, we determined the effect of TGF-b, Endothelin-1 and PDGF on FGFR4 expression in human lung fibroblasts. We determined the effect FGFR4 inhibition, using a specific pharmacological inhibitor (FGF401), or genetic deletion in murine embryonic fibroblasts (MEFs) on TGF-b-induced myofibroblastic differentiation. In vivo, we evaluated the development of bleomycin-induced lung fibrosis in Fgfr4-deficient (Fgfr4-/-) mice compared to Wild Type littermates (WT), and after FGF401 treatment in WT mice compared to a control group receiving the solvent only. Results FGFR4 was decreased in IPF lungs as compared to control lungs, at mRNA and protein levels. In vitro, FGFR4 was downregulated after treatment by TGF- ß, Endothelin-1 and PDGF. In vitro, FGFR4 inhibition by FGF401 prevented TGF-b1-induced collagen and ACTA2 increase in lung fibroblasts. Similar results were observed in Fgfr4-/- MEFs. In vivo, FGFR4 genetic deficiency or FGFR4 pharmacological inhibition did not modulate bleomycin-induced pulmonary fibrosis. Conclusion Our data suggest that FGFR4 exerts pro-fibrotic properties by enhancing TGF- ß signaling in vitro. However, the inhibition of FGFR4 is not sufficient to prevent the development of pulmonary fibrosis in vivo.
RESUMO
INTRODUCTION: The pathogenesis of sarcoidosis involves tissue remodelling mediated by the accumulation of abnormal extracellular matrix, which is partly the result of an imbalance in collagen synthesis, cross-linking and degradation. During this process, collagen fragments or neoepitopes, are released into the circulation. The significance of these circulating collagen neoepitopes in sarcoidosis remains unknown. METHODS: We employed plasma samples from patients with sarcoidosis enrolled in A Case Control Etiologic Study of Sarcoidosis (ACCESS) and Genomic Research in Alpha-1 Antitrypsin Deficiency and Sarcoidosis (GRADS), and healthy control patients recruited from the Yale community. Plasma concentrations of type III and VI collagen degradation (C3M and C6M) and formation (PRO-C3 and PRO-C6) were quantified via neoepitope-specific competitive ELISA, and statistical associations were sought with clinical phenotypes. RESULTS: Relative to healthy controls, the plasma of both sarcoidosis cohorts was enriched for C3M and C6M, irrespective of corticosteroid use and disease duration. While circulating collagen neoepitopes were independent of Scadding stage, there was a significant association between multiorgan disease and PRO-C3, PRO-C6 and C3M in the ACCESS cohort; PRO-C3 and C6M displayed this property in GRADS. These findings were unrelated to plasma levels of interleukin-4 (IL-4), IL-5, IL-6, IL-9, IL-10 and IL-13. Moreover, PRO-C3 was associated with dermatological disease in both cohorts. DISCUSSION: In two well-characterised sarcoidosis cohorts, we discovered that the plasma is enriched for neoepitopes of collagen degradation (C3M and C6M). In multiorgan disease, there was an association with circulating neoepitopes of type III formation (PRO-C3), perhaps mediated by dermatological sarcoidosis. Further investigation in this arena has the potential to foster new insights into the pathogenic mechanisms of this complex disease.
RESUMO
The pleural lining of the thorax regulates local immunity, inflammation and repair. A variety of conditions, both benign and malignant, including pleural mesothelioma, can affect this tissue. A lack of knowledge concerning the mesothelial and stromal cells comprising the pleura has hampered the development of targeted therapies. Here, we present the first comprehensive single-cell transcriptomic atlas of the human parietal pleura and demonstrate its utility in elucidating pleural biology. We confirm the presence of known universal fibroblasts and describe novel, potentially pleural-specific, fibroblast subtypes. We also present transcriptomic characterisation of multiple in vitro models of benign and malignant mesothelial cells, and characterise these through comparison with in vivo transcriptomic data. While bulk pleural transcriptomes have been reported previously, this is the first study to provide resolution at the single-cell level. We expect our pleural cell atlas will prove invaluable to those studying pleural biology and disease. It has already enabled us to shed light on the transdifferentiation of mesothelial cells, allowing us to develop a simple method for prolonging mesothelial cell differentiation in vitro.
Assuntos
Mesotelioma Maligno , Mesotelioma , Neoplasias Pleurais , Humanos , Pleura/patologia , Mesotelioma/genética , Mesotelioma/patologia , Mesotelioma Maligno/patologia , Neoplasias Pleurais/genética , Neoplasias Pleurais/patologia , Perfilação da Expressão GênicaRESUMO
RATIONALE: Recent data suggest that the localisation of airway epithelial cells in the distal lung in idiopathic pulmonary fibrosis (IPF) may drive pathology. We set out to discover whether chemokines expressed in these ectopic airway epithelial cells may contribute to the pathogenesis of IPF. METHODS: We analysed whole lung and single-cell transcriptomic data obtained from patients with IPF. In addition, we measured chemokine levels in blood, bronchoalveolar lavage (BAL) of IPF patients and air-liquid interface cultures. We employed ex vivo donor and IPF lung fibroblasts and an animal model of pulmonary fibrosis to test the effects of chemokine signalling on fibroblast function. RESULTS: By analysis of whole-lung transcriptomics, protein and BAL, we discovered that CXCL6 (a member of the interleukin-8 family) was increased in patients with IPF. Elevated CXCL6 levels in the BAL of two cohorts of patients with IPF were associated with poor survival (hazard ratio of death or progression 1.89, 95% CI 1.16-3.08; n=179, p=0.01). By immunostaining and single-cell RNA sequencing, CXCL6 was detected in secretory cells. Administration of mCXCL5 (LIX, murine CXCL6 homologue) to mice increased collagen synthesis with and without bleomycin. CXCL6 increased collagen I levels in donor and IPF fibroblasts 4.4-fold and 1.7-fold, respectively. Both silencing of and chemical inhibition of CXCR1/2 blocked the effects of CXCL6 on collagen, while overexpression of CXCR2 increased collagen I levels 4.5-fold in IPF fibroblasts. CONCLUSIONS: CXCL6 is expressed in ectopic airway epithelial cells. Elevated levels of CXCL6 are associated with IPF mortality. CXCL6-driven collagen synthesis represents a functional consequence of ectopic localisation of airway epithelial cells in IPF.
Assuntos
Fibrose Pulmonar Idiopática , Animais , Humanos , Camundongos , Bleomicina , Quimiocina CXCL6/metabolismo , Quimiocinas/metabolismo , Colágeno/metabolismo , Fibroblastos/metabolismo , Fibrose Pulmonar Idiopática/genética , Pulmão/patologiaRESUMO
BACKGROUND: Single-cell RNA sequencing (scRNA-seq) technology has enabled assessment of transcriptome-wide changes at single-cell resolution. Due to the heterogeneity in environmental exposure and genetic background across subjects, subject effect contributes to the major source of variation in scRNA-seq data with multiple subjects, which severely confounds cell type specific differential expression (DE) analysis. Moreover, dropout events are prevalent in scRNA-seq data, leading to excessive number of zeroes in the data, which further aggravates the challenge in DE analysis. RESULTS: We developed iDESC to detect cell type specific DE genes between two groups of subjects in scRNA-seq data. iDESC uses a zero-inflated negative binomial mixed model to consider both subject effect and dropouts. The prevalence of dropout events (dropout rate) was demonstrated to be dependent on gene expression level, which is modeled by pooling information across genes. Subject effect is modeled as a random effect in the log-mean of the negative binomial component. We evaluated and compared the performance of iDESC with eleven existing DE analysis methods. Using simulated data, we demonstrated that iDESC had well-controlled type I error and higher power compared to the existing methods. Applications of those methods with well-controlled type I error to three real scRNA-seq datasets from the same tissue and disease showed that the results of iDESC achieved the best consistency between datasets and the best disease relevance. CONCLUSIONS: iDESC was able to achieve more accurate and robust DE analysis results by separating subject effect from disease effect with consideration of dropouts to identify DE genes, suggesting the importance of considering subject effect and dropouts in the DE analysis of scRNA-seq data with multiple subjects.
Assuntos
Modelos Estatísticos , Transcriptoma , Humanos , Análise de Sequência de RNARESUMO
VISTA (V domain immunoglobulin suppressor of T cell activation, also called PD-1H [programmed death-1 homolog]), a novel immune regulator expressed on myeloid and T lymphocyte lineages, is upregulated in mouse and human idiopathic pulmonary fibrosis (IPF). However, the significance of VISTA and its therapeutic potential in regulating IPF has yet to be defined. To determine the role of VISTA and its therapeutic potential in IPF, the expression profile of VISTA was evaluated from human single-cell RNA sequencing data (IPF Cell Atlas). Inflammatory response and lung fibrosis were assessed in bleomycin-induced experimental pulmonary fibrosis models in VISTA-deficient mice compared with wild-type littermates. In addition, these outcomes were evaluated after VISTA agonistic antibody treatment in the wild-type pulmonary fibrosis mice. VISTA expression was increased in lung tissue-infiltrating monocytes of patients with IPF. VISTA was induced in the myeloid population, mainly circulating monocyte-derived macrophages, during bleomycin-induced pulmonary fibrosis. Genetic ablation of VISTA drastically promoted pulmonary fibrosis, and bleomycin-induced fibroblast activation was dependent on the interaction between VISTA-expressing myeloid cells and fibroblasts. Treatment with VISTA agonistic antibody reduced fibrotic phenotypes accompanied by the suppression of lung innate immune and fibrotic mediators. In conclusion, these results suggest that VISTA upregulation in pulmonary fibrosis may be a compensatory mechanism to limit inflammation and fibrosis, and stimulation of VISTA signaling using VISTA agonists effectively limits the fibrotic innate immune landscape and consequent tissue fibrosis. Further studies are warranted to test VISTA as a novel therapeutic target for the IPF treatment.
Assuntos
Fibrose Pulmonar Idiopática , Humanos , Camundongos , Animais , Fibrose Pulmonar Idiopática/metabolismo , Pulmão/patologia , Fibrose , Bleomicina/farmacologia , Inflamação/metabolismo , Fibroblastos/metabolismoRESUMO
BACKGROUND: Although genome-wide association studies (GWAS) have identified many genomic regions associated with idiopathic pulmonary fibrosis (IPF), the causal genes and functions remain largely unknown. Many single-cell expression data have become available for IPF, and there is increasing evidence suggesting a shared genetic basis between IPF and other diseases. METHODS: We conducted integrative analyses to improve the power of GWAS. First, we calculated global and local genetic correlations to identify IPF genetically associated traits and local regions. Then, we prioritised candidate genes contributing to local genetic correlation. Second, we performed transcriptome-wide association analysis (TWAS) of 44 tissues to identify candidate genes whose genetically predicted expression level is associated with IPF. To replicate our findings and investigate the regulatory role of the transcription factors (TF) in identified candidate genes, we first conducted the heritability enrichment analysis in TF binding sites. Then, we examined the enrichment of the TF target genes in cell-type-specific differentially expressed genes (DEGs) identified from single-cell expression data of IPF and healthy lung samples. FINDINGS: We identified 12 candidate genes across 13 genomic regions using local genetic correlation, including the POT1 locus (p value=0.00041), which contained variants with protective effects on lung cancer but increasing IPF risk. We identified another 13 novel genes using TWAS. Two TFs, MAFK and SMAD2, showed significant enrichment in both partitioned heritability and cell-type-specific DEGs. INTERPRETATION: Our integrative analysis identified new genes for IPF susceptibility and expanded the understanding of the complex genetic architecture and disease mechanism of IPF.
Assuntos
Predisposição Genética para Doença , Fibrose Pulmonar Idiopática , Humanos , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla , Estudos de Casos e Controles , Fibrose Pulmonar Idiopática/genética , Pulmão , Fatores de Transcrição/genéticaRESUMO
BACKGROUND: Obstructive sleep apnoea (OSA) is a highly prevalent disease and a major cause of systemic inflammation leading to neurocognitive, behavioural, metabolic and cardiovascular dysfunction in children and adults. However, the impact of OSA on the heterogeneity of circulating immune cells remains to be determined. METHODS: We applied single-cell transcriptomics analysis (scRNA-seq) to identify OSA-induced changes in transcriptional landscape in peripheral blood mononuclear cell (PBMC) composition, which uncovered severity-dependent differences in several cell lineages. Furthermore, a machine-learning approach was used to combine scRNAs-seq cell-specific markers with those differentially expressed in OSA. RESULTS: scRNA-seq demonstrated OSA-induced heterogeneity in cellular composition and enabled the identification of previously undescribed cell types in PBMCs. We identified a molecular signature consisting of 32 genes, which distinguished OSA patients from various controls with high precision (area under the curve 0.96) and accuracy (93% positive predictive value and 95% negative predictive value) in an independent PBMC bulk RNA expression dataset. CONCLUSION: OSA deregulates systemic immune function and displays a molecular signature that can be assessed in standard cellular RNA without the need for pre-analytical cell separation, thereby making the assay amenable to application in a molecular diagnostic setting.
Assuntos
Leucócitos Mononucleares , Apneia Obstrutiva do Sono , Adulto , Humanos , Criança , Análise da Expressão Gênica de Célula Única , InflamaçãoRESUMO
Studies comparing single cell RNA-Seq (scRNA-Seq) data between conditions mainly focus on differences in the proportion of cell types or on differentially expressed genes. In many cases these differences are driven by changes in cell interactions which are challenging to infer without spatial information. To determine cell-cell interactions that differ between conditions we developed the Cell Interaction Network Inference (CINS) pipeline. CINS combines Bayesian network analysis with regression-based modeling to identify differential cell type interactions and the proteins that underlie them. We tested CINS on a disease case control and on an aging mouse dataset. In both cases CINS correctly identifies cell type interactions and the ligands involved in these interactions improving on prior methods suggested for cell interaction predictions. We performed additional mouse aging scRNA-Seq experiments which further support the interactions identified by CINS.
Assuntos
Perfilação da Expressão Gênica , Análise de Célula Única , Animais , Teorema de Bayes , Comunicação Celular , Perfilação da Expressão Gênica/métodos , Ligantes , Camundongos , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodosRESUMO
Rationale: A prevailing paradigm recognizes idiopathic pulmonary fibrosis (IPF) originating from various alveolar epithelial cell (AEC) injuries, and there is a growing appreciation of AEC aging as a key driver of the pathogenesis. Despite this progress, it is incompletely understood what main factor(s) contribute to the worsened alveolar epithelial aging in lung fibrosis. It remains a challenge how to dampen AEC aging and thereby mitigate the disease progression. Objectives: To determine the role of AEC CD38 (cluster of differentiation 38) in promoting cellular aging and lung fibrosis. Methods: We used single-cell RNA sequencing, real-time PCR, flow cytometry, and Western blotting. Measurements and Main Results: We discovered a pivotal role of CD38, a cardinal nicotinamide adenine dinucleotide (NAD) hydrolase, in AEC aging and its promotion of lung fibrosis. We found increased CD38 expression in IPF lungs that inversely correlated with the lung functions of patients. CD38 was primarily located in the AECs of human lung parenchyma and was markedly induced in IPF AECs. Similarly, CD38 expression was elevated in the AECs of fibrotic lungs of young mice and further augmented in those of old mice, which was in accordance with a worsened AEC aging phenotype and an aggravated lung fibrosis in the old animals. Mechanistically, we found that CD38 elevation downregulated intracellular NAD, which likely led to the aging promoting impairment of the NAD-dependent cellular and molecular activities. Furthermore, we demonstrated that genetic and pharmacological inactivation of CD38 improved these NAD dependent events and ameliorated bleomycin-induced lung fibrosis. Conclusions: Our study suggests targeting alveolar CD38 as a novel and effective therapeutic strategy to treat this pathology.
Assuntos
Células Epiteliais Alveolares , Fibrose Pulmonar Idiopática , Envelhecimento , Células Epiteliais Alveolares/metabolismo , Animais , Bleomicina , Senescência Celular/genética , Humanos , Fibrose Pulmonar Idiopática/genética , Pulmão/patologia , Camundongos , NAD/metabolismoRESUMO
Rationale: Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and often fatal disorder. Two U.S. Food and Drug Administration-approved antifibrotic drugs, nintedanib and pirfenidone, slow the rate of decline in lung function, but responses are variable and side effects are common. Objectives: Using an in silico data-driven approach, we identified a robust connection between the transcriptomic perturbations in IPF disease and those induced by saracatinib, a selective Src kinase inhibitor originally developed for oncological indications. Based on these observations, we hypothesized that saracatinib would be effective at attenuating pulmonary fibrosis. Methods: We investigated the antifibrotic efficacy of saracatinib relative to nintedanib and pirfenidone in three preclinical models: 1) in vitro in normal human lung fibroblasts; 2) in vivo in bleomycin and recombinant Ad-TGF-ß (adenovirus transforming growth factor-ß) murine models of pulmonary fibrosis; and 3) ex vivo in mice and human precision-cut lung slices from these two murine models as well as patients with IPF and healthy donors. Measurements and Main Results: In each model, the effectiveness of saracatinib in blocking fibrogenic responses was equal or superior to nintedanib and pirfenidone. Transcriptomic analyses of TGF-ß-stimulated normal human lung fibroblasts identified specific gene sets associated with fibrosis, including epithelial-mesenchymal transition, TGF-ß, and WNT signaling that was uniquely altered by saracatinib. Transcriptomic analysis of whole-lung extracts from the two animal models of pulmonary fibrosis revealed that saracatinib reverted many fibrogenic pathways, including epithelial-mesenchymal transition, immune responses, and extracellular matrix organization. Amelioration of fibrosis and inflammatory cascades in human precision-cut lung slices confirmed the potential therapeutic efficacy of saracatinib in human lung fibrosis. Conclusions: These studies identify novel Src-dependent fibrogenic pathways and support the study of the therapeutic effectiveness of saracatinib in IPF treatment.
Assuntos
Fibrose Pulmonar Idiopática , Inibidores de Proteínas Quinases , Animais , Humanos , Camundongos , Bleomicina/efeitos adversos , Fibroblastos/metabolismo , Fibrose , Fibrose Pulmonar Idiopática/tratamento farmacológico , Pulmão/patologia , Inibidores de Proteínas Quinases/uso terapêutico , Quinases da Família src/metabolismo , Fator de Crescimento Transformador beta/metabolismoRESUMO
INTRODUCTION: Maternal feeding practices may be linked to infant obesogenic outcomes, but research to date has focused primarily on infant growth as an outcome of maternal feeding practices rather than exploring additional obesogenic outcomes like infant appetite and diet. Therefore, the current study examined the association between maternal feeding practices and beliefs and infant growth, diet, and appetite simultaneously at a critical timepoint for obesity risk development (i.e., 3-months-old). METHODS: Thirty-two 3-month-old infants and their mothers participated in this cross-sectional study. Infant anthropometrics were collected by trained staff and mothers completed questionnaires regarding maternal feeding practices and beliefs and infant diet and appetite. The data were analyzed by Spearman correlations. RESULTS: Statistically significant correlations were identified between maternal feeding practices (e.g., using food to calm, concern about infant weight) and infant satiety, appetite, food responsiveness, slow eating, and kilocalories consumed. Infant weight-for-length was related to maternal concern about infant underweight and mother-infant social interaction during feeding. DISCUSSION: These findings highlight the importance of the mother-infant feeding relationship and how these associations may influence responsive feeding practices and infant weight-related outcomes.
Assuntos
Apetite , Comportamento Alimentar , Feminino , Lactente , Humanos , Estudos Transversais , Mães , Dieta , Inquéritos e Questionários , Aleitamento MaternoRESUMO
BACKGROUND: Cellular diversity of the lung endothelium has not been systematically characterized in humans. We provide a reference atlas of human lung endothelial cells (ECs) to facilitate a better understanding of the phenotypic diversity and composition of cells comprising the lung endothelium. METHODS: We reprocessed human control single-cell RNA sequencing (scRNAseq) data from 6 datasets. EC populations were characterized through iterative clustering with subsequent differential expression analysis. Marker genes were validated by fluorescent microscopy and in situ hybridization. scRNAseq of primary lung ECs cultured in vitro was performed. The signaling network between different lung cell types was studied. For cross-species analysis or disease relevance, we applied the same methods to scRNAseq data obtained from mouse lungs or from human lungs with pulmonary hypertension. RESULTS: Six lung scRNAseq datasets were reanalyzed and annotated to identify >15 000 vascular EC cells from 73 individuals. Differential expression analysis of EC revealed signatures corresponding to endothelial lineage, including panendothelial, panvascular, and subpopulation-specific marker gene sets. Beyond the broad cellular categories of lymphatic, capillary, arterial, and venous ECs, we found previously indistinguishable subpopulations; among venous EC, we identified 2 previously indistinguishable populations: pulmonary-venous ECs (COL15A1neg) localized to the lung parenchyma and systemic-venous ECs (COL15A1pos) localized to the airways and the visceral pleura; among capillary ECs, we confirmed their subclassification into recently discovered aerocytes characterized by EDNRB, SOSTDC1, and TBX2 and general capillary EC. We confirmed that all 6 endothelial cell types, including the systemic-venous ECs and aerocytes, are present in mice and identified endothelial marker genes conserved in humans and mice. Ligand-receptor connectome analysis revealed important homeostatic crosstalk of EC with other lung resident cell types. scRNAseq of commercially available primary lung ECs demonstrated a loss of their native lung phenotype in culture. scRNAseq revealed that endothelial diversity is maintained in pulmonary hypertension. Our article is accompanied by an online data mining tool (www.LungEndothelialCellAtlas.com). CONCLUSIONS: Our integrated analysis provides a comprehensive and well-crafted reference atlas of ECs in the normal lung and confirms and describes in detail previously unrecognized endothelial populations across a large number of humans and mice.
Assuntos
Biomarcadores , Células Endoteliais/metabolismo , Pulmão/metabolismo , Análise de Célula Única , Capilares , Biologia Computacional/métodos , Bases de Dados Genéticas , Suscetibilidade a Doenças , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Pulmão/irrigação sanguínea , Pulmão/citologia , Microcirculação , Especificidade de Órgãos , Artéria Pulmonar , Veias Pulmonares , Análise de Célula Única/métodos , TranscriptomaRESUMO
BACKGROUND: Recent development of single cell sequencing technologies has made it possible to identify genes with different expression (DE) levels at the cell type level between different groups of samples. In this article, we propose to borrow information through known biological networks to increase statistical power to identify differentially expressed genes (DEGs). RESULTS: We develop MRFscRNAseq, which is based on a Markov random field (MRF) model to appropriately accommodate gene network information as well as dependencies among cell types to identify cell-type specific DEGs. We implement an Expectation-Maximization (EM) algorithm with mean field-like approximation to estimate model parameters and a Gibbs sampler to infer DE status. Simulation study shows that our method has better power to detect cell-type specific DEGs than conventional methods while appropriately controlling type I error rate. The usefulness of our method is demonstrated through its application to study the pathogenesis and biological processes of idiopathic pulmonary fibrosis (IPF) using a single-cell RNA-sequencing (scRNA-seq) data set, which contains 18,150 protein-coding genes across 38 cell types on lung tissues from 32 IPF patients and 28 normal controls. CONCLUSIONS: The proposed MRF model is implemented in the R package MRFscRNAseq available on GitHub. By utilizing gene-gene and cell-cell networks, our method increases statistical power to detect differentially expressed genes from scRNA-seq data.
Assuntos
Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Algoritmos , Humanos , RNA-Seq , Análise de Sequência de RNA , Análise de Célula ÚnicaRESUMO
Sarcoidosis is a systemic granulomatous disease predominantly affecting the lungs. The mechanisms promoting disease pathogenesis and progression are unknown, although interleukin-15 (IL-15) has been associated with the immune-mediated inflammation of sarcoidosis. Because the identification of a mechanistically based, clinically relevant biomarker for sarcoidosis remains elusive, we hypothesized this role for IL-15. Pulmonary sarcoidosis granuloma formation was modeled using trehalose 6,6'-dimicolate (TDM), which was administered into wild-type and three lineages of mice: those overexpressing IL-15, deficient in IL-15, and deficient in IL-15 receptor α. The number of granulomas per lung was counted and normalized to the wild type. IL-15 concentrations were measured in the bronchoalveolar lavage (BAL) from healthy controls and subjects with sarcoidosis in our cohort, where associations between IL-15 levels and clinical manifestations were sought. Findings were validated in another independent sarcoidosis cohort. TDM administration resulted in similar granuloma numbers across all lineages of mice. IL-15 concentrations were elevated in the BAL of both human cohorts, irrespective of disease phenotypes. In exploratory analysis, an association with obesity was observed, and various other soluble mediators were identified in the BAL of both cohorts. Although IL-15 is enriched in the sarcoidosis lung, it was independent of disease pathogenesis or clinical manifestations in our mouse model and human cohorts of sarcoidosis. An association with obesity perhaps reflects the ongoing inflammatory processes of these comorbid conditions. Our findings showed that IL-15 is redundant for disease pathogenesis and clinical progression of sarcoidosis.
Assuntos
Granuloma/metabolismo , Interleucina-15/metabolismo , Fenótipo , Sarcoidose Pulmonar/patologia , Sarcoidose/metabolismo , Animais , Líquido da Lavagem Broncoalveolar/citologia , Modelos Animais de Doenças , Granuloma/patologia , Inflamação/patologia , Interleucina-15/genética , Pulmão/metabolismo , Pulmão/patologia , Sarcoidose/patologia , Sarcoidose Pulmonar/complicaçõesRESUMO
BACKGROUND: Alpha-1 antitrypsin deficiency (AATD) is a genetic condition that causes early onset pulmonary emphysema and airways obstruction. The complete mechanisms via which AATD causes lung disease are not fully understood. To improve our understanding of the pathogenesis of AATD, we investigated gene expression profiles of bronchoalveolar lavage (BAL) and peripheral blood mononuclear cells (PBMCs) in AATD individuals. METHODS: We performed RNA-Seq on RNA extracted from matched BAL and PBMC samples isolated from 89 subjects enrolled in the Genomic Research in Alpha-1 Antitrypsin Deficiency and Sarcoidosis (GRADS) study. Subjects were stratified by genotype and augmentation therapy. Supervised and unsupervised differential gene expression analyses were performed using Weighted Gene Co-expression Network Analysis (WGCNA) to identify gene profiles associated with subjects' clinical variables. The genes in the most significant WGCNA module were used to cluster AATD individuals. Gene validation was performed by NanoString nCounter Gene Expression Assay. RESULT: We observed modest effects of AATD genotype and augmentation therapy on gene expression. When WGCNA was applied to BAL transcriptome, one gene module, ME31 (2312 genes), correlated with the highest number of clinical variables and was functionally enriched with numerous immune T-lymphocyte related pathways. This gene module identified two distinct clusters of AATD individuals with different disease severity and distinct PBMC gene expression patterns. CONCLUSIONS: We successfully identified novel clusters of AATD individuals where severity correlated with increased immune response independent of individuals' genotype and augmentation therapy. These findings may suggest the presence of previously unrecognised disease endotypes in AATD that associate with T-lymphocyte immunity and disease severity.