Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Pestic Biochem Physiol ; 202: 105963, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38879311

RESUMO

The long-term use of pesticides in the field, and the high fertility and adaptability of phytophagous mites have led to resistance problems; consequently, novel safe and efficient active substances are necessary to broaden the tools of pest mite control. Natural enemies of arthropods typically secrete substances with paralytic or lethal effects on their prey, and those substances are a resource for future biopesticides. In this study, two putative venom peptide genes were identified in a parasitic mite Neoseiulus barkeri transcriptome. Recombinant venom NbSP2 peptide injected into Tetranychus cinnabarinus mites was significantly more lethal than recombinant NBSP1. NbSP2 was also lethal to Spodoptera litura when injected but not when fed to third instar larvae. The interaction proteins of NbSP2 in T. cinnabarinus and S. litura were identified by affinity chromatography. Among these proteins, ATP synthase subunit ß (ATP SSß) was deduced as a potential target. Four binding sites were predicted between NBSP2 and ATP SSß of T. cinnabarinus and S. litura. In conclusion, we identified a venom peptide with activity against T. cinnabarinus and S. litura. This study provides a novel component for development of a new biological pesticide.


Assuntos
Peptídeos , Venenos de Aranha , Animais , Venenos de Aranha/química , Venenos de Aranha/genética , Peptídeos/farmacologia , Peptídeos/química , Ácaros/efeitos dos fármacos , Spodoptera/efeitos dos fármacos , Tetranychidae/efeitos dos fármacos , Tetranychidae/genética , Controle Biológico de Vetores/métodos , Sequência de Aminoácidos , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/metabolismo , Proteínas de Artrópodes/química , Comportamento Predatório/efeitos dos fármacos
2.
Pestic Biochem Physiol ; 167: 104592, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32527425

RESUMO

Bacillus thuringiensis (Bt) Cry1Fa and Cry1Ab proteins are important Cry toxins due to their high, selective toxicity against a number of lepidopteran species, including important pests of corn and cotton. Competition binding assays are a classical tool for investigating Cry toxin interactions with target pest insects. We developed a fluorescence-based binding assay and assessed Cry1Fa and Cry1Ab toxin binding to brush border membrane preparations from lepidopteran corn pests including Ostrinia nubilalis (European corn borer, ECB), Diatraea grandiosella (south western corn borer, SWCB), and Helicoverpa zea (corn earworm, CEW). Homologous and heterologous competition binding assays with fluorophore-(Alexa488)-labeled Cry1Fa toxin showed that Cry1Fa shares binding site(s) with Cry1Ab toxin in ECB, and SWCB for which Cry1Ab has higher affinity than Cry1Fa. Apart from the shared binding sites, Cry1Ab and Cry1Fa bind an additional site(s) in ECB and SWCB. In CEW, Cry1Fa and Cry1Ab each, has a high affinity binding site(s), which binds the heterologous toxin with low affinity. The Cry1Ab-Cry1Fa toxin binding models for ECB, SWCB and CEW based on our results are considered in the context of what is known about acquired cross-resistance against Cry1Ab and Cry1Fa toxins.


Assuntos
Bacillus thuringiensis , Mariposas , Animais , Proteínas de Bactérias , Sítios de Ligação , Endotoxinas , Proteínas Hemolisinas , Larva , Microvilosidades , Zea mays
3.
Biochem Biophys Res Commun ; 462(3): 184-9, 2015 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-25957471

RESUMO

The structures of several Bacillus thuringiensis (Bt) insecticidal crystal proteins have been determined by crystallographic methods and a close relationship has been explicated between specific toxicities and conserved three-dimensional architectures. In this study, as a representative of the coleopteran- and hemipteran-specific Cry51A group, the complete structure of Cry51Aa1 protoxin has been determined by X-ray crystallography at 1.65 Å resolution. This is the first report of a coleopteran-active Bt insecticidal toxin with high structural similarity to the aerolysin-type ß-pore forming toxins (ß-PFTs). Moreover, study of featured residues and structural elements reveal their possible roles in receptor binding and pore formation events. This study provides new insights into the action of aerolysin-type ß-PFTs from a structural perspective, and could be useful for the control of coleopteran and hemipteran insect pests in agricultures.


Assuntos
Bacillus thuringiensis/química , Proteínas de Bactérias/química , Toxinas Bacterianas/química , Endotoxinas/química , Proteínas Hemolisinas/química , Proteínas Citotóxicas Formadoras de Poros/química , Sequência de Aminoácidos , Animais , Bacillus thuringiensis/genética , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/genética , Toxinas Bacterianas/genética , Besouros , Cristalografia por Raios X , Endotoxinas/genética , Proteínas Hemolisinas/genética , Modelos Moleculares , Dados de Sequência Molecular , Controle Biológico de Vetores , Proteínas Citotóxicas Formadoras de Poros/genética , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Quaternária de Proteína , Homologia de Sequência de Aminoácidos
4.
J Invertebr Pathol ; 132: 105-110, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26408969

RESUMO

Binary toxin (Bin) produced by Lysinibacillus sphaericus is toxic to Culex and Anopheles mosquito larvae. It has been used world-wide for control of mosquitoes that vector disease. The Bin toxin interacts with the glucosidase receptor, Cpm1, in Culex and its orthologue, Agm3, in Anopheles mosquitoes. However, the exact mechanism of its mode of action is not clearly understood. It is essential to understand mode of action of Bin toxin to circumvent the resistance that develops over generations of exposure. A suitable model cell line will facilitate investigations of the molecular action of Bin toxin. Here we report Bin toxin activity on Ag55 cell line that has been derived from an actual target, Anopheles gambiae larvae. The Bin toxin, both in pro and active forms, kills the Ag55 cells within 24h. Bin toxin internalizes in Ag55 cells and also induces vacuolation as tracked by Lysotracker dye. The dose response studies showed that 1.5nM of Bin toxin is sufficient to induce vacuolation and Ag55 cell death. Presence of α-glucosidase gene (Agm3) expression in the Ag55 cells was also confirmed. Thus, Ag55 cells constitute an appropriate model system to decipher the mode of Bin action in mosquito larvae.


Assuntos
Anopheles/efeitos dos fármacos , Bacillaceae/química , Toxinas Bacterianas/farmacologia , Animais , Anopheles/citologia , Toxinas Bacterianas/isolamento & purificação , Morte Celular/efeitos dos fármacos , Linhagem Celular , Larva/efeitos dos fármacos , Vacúolos/ultraestrutura
5.
J Invertebr Pathol ; 123: 1-5, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25218400

RESUMO

The lesser mealworm, Alphitobius diaperinus, is a serious cosmopolitan pest of commercial poultry facilities because of its involvement in structural damage to poultry houses, reduction in feed conversion efficiency, and transfer of avian and human pathogens. Cry3Aa, Cry3Bb, and Cry8Ca insecticidal proteins of Bacillus thuringiensis are used to control coleopteran larvae. Cadherins localized in the midgut epithelium function as receptors for Cry toxins in lepidopteran, coleopteran, and dipteran insects. Previously, we demonstrated that the truncated cadherin (DvCad1) from Diabrotica virgifera virgifera, which consists of the C-terminal cadherin repeats (CR) 8-10 and expressed in Escherichia coli, enhanced Cry3Aa and Cry3Bb toxicity against several coleopteran species. Here we report that the DvCad1-CR8-10 enhances Cry3Aa, Cry3Bb, and Cry8Ca toxicity to lesser mealworm. Previously, by an enzyme linked immunosorbent microplate assay, we demonstrated that the DvCad1-CR8-10 binds activated-Cry3Aa (11.8 nM), -Cry3Bb (1.4nM), and now report that CR8-10 binds activated-Cry8Ca (5.7 nM) toxin. The extent of Cry toxins enhancement by DvCad1-CR8-10, which ranged from 3.30- to 5.93-fold, may have practical application for lesser mealworm control in preventing avian and human pathogen transfer in poultry facilities.


Assuntos
Proteínas de Bactérias/toxicidade , Endotoxinas/toxicidade , Proteínas Hemolisinas/toxicidade , Proteínas de Insetos/toxicidade , Controle Biológico de Vetores/métodos , Tenebrio , Animais , Toxinas de Bacillus thuringiensis , Besouros , Proteínas de Insetos/metabolismo , Tenebrio/efeitos dos fármacos
6.
J Proteome Res ; 11(12): 5843-55, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23153095

RESUMO

Lipid rafts are microdomains in the plasma membrane of eukaryotic cells. Among their many functions, lipid rafts are involved in cell toxicity caused by pore forming bacterial toxins including Bacillus thuringiensis (Bt) Cry toxins. We isolated lipid rafts from brush border membrane vesicles (BBMV) of Aedes aegypti larvae as a detergent resistant membrane (DRM) fraction on density gradients. Cholesterol, aminopeptidase (APN), alkaline phosphatase (ALP) and the raft marker flotillin were preferentially partitioned into the lipid raft fraction. When mosquitocidal Cry4Ba toxin was preincubated with BBMV, Cry4Ba localized to lipid rafts. A proteomic approach based on one-dimensional gel electrophoresis, in-gel trypsin digestion, followed by liquid chromatography-mass spectrometry (geLC-MS/MS) identified a total of 386 proteins. Of which many are typical lipid raft marker proteins including flotillins and glycosylphosphatidylinositol (GPI)-anchored proteins. Identified raft proteins were annotated in silico for functional and physicochemical characteristics. Parameters such as distribution of isoelectric point, molecular mass, and predicted post-translational modifications relevant to lipid raft proteins (GPI anchorage and myristoylation or palmitoylation) were analyzed for identified proteins in the DRM fraction. From a functional point of view, this study identified proteins implicated in Cry toxin interactions as well as membrane-associated proteins expressed in the mosquito midgut that have potential relevance to mosquito biology and vector management.


Assuntos
Aedes/química , Proteínas de Bactérias/química , Cromatografia Líquida/métodos , Endotoxinas/química , Proteínas Hemolisinas/química , Microdomínios da Membrana/química , Proteoma/análise , Aedes/enzimologia , Fosfatase Alcalina/química , Aminopeptidases/química , Animais , Toxinas de Bacillus thuringiensis , Detergentes , Eletroforese em Gel de Poliacrilamida , Escherichia coli/química , Glicosilfosfatidilinositóis/química , Ponto Isoelétrico , Larva/química , Larva/enzimologia , Proteínas de Membrana/química , Microvilosidades/química , Octoxinol , Mapeamento de Interação de Proteínas , Processamento de Proteína Pós-Traducional , Proteoma/química , Proteômica/métodos , Receptores de Superfície Celular/química , Solubilidade , Espectrometria de Massas em Tandem/métodos
7.
BMC Genomics ; 13: 248, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22703117

RESUMO

BACKGROUND: Bacillus thuringiensis var. israelensis (Bti) is a natural larval mosquito pathogen producing pore-forming toxins targeting the midgut of Diptera larvae. It is used worldwide for mosquito control. Resistance mechanisms of an Aedes aegypti laboratory strain selected for 30 generations with field-collected leaf litter containing Bti toxins were investigated in larval midguts at two levels: 1. gene transcription using DNA microarray and RT-qPCR and 2. differential expression of brush border membrane proteins using DIGE (Differential In Gel Electrophoresis). RESULTS: Several Bti Cry toxin receptors including alkaline phosphatases and N-aminopeptidases and toxin-binding V-ATPases exhibited altered expression levels in the resistant strain. The under-expression of putative Bti-receptors is consistent with Bt-resistance mechanisms previously described in Lepidoptera. Four soluble metalloproteinases were found under-transcribed together with a drastic decrease of metalloproteinases activity in the resistant strain, suggesting a role in resistance by decreasing the amount of activated Cry toxins in the larval midgut. CONCLUSIONS: By combining transcriptomic and proteomic approaches, we detected expression changes at nearly each step of the ingestion-to-infection process, providing a short list of genes and proteins potentially involved in Bti-resistance whose implication needs to be validated. Collectively, these results open the way to further functional analyses to better characterize Bti-resistance mechanisms in mosquitoes.


Assuntos
Bacillus thuringiensis/metabolismo , Bacillus thuringiensis/patogenicidade , Culicidae/metabolismo , Culicidae/microbiologia , Larva/metabolismo , Larva/microbiologia , Proteômica/métodos , Transcriptoma/genética , Febre Amarela/transmissão , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Aminopeptidases/genética , Aminopeptidases/metabolismo , Animais , Culicidae/genética , Larva/genética , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , ATPases Vacuolares Próton-Translocadoras/genética , ATPases Vacuolares Próton-Translocadoras/metabolismo
8.
Appl Environ Microbiol ; 78(2): 354-62, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22081566

RESUMO

The Cry proteins produced by Bacillus thuringiensis (Bt) are the most widely used biopesticides effective against a range of crop pests and disease vectors. Like chemical pesticides, development of resistance is the primary threat to the long-term efficacy of Bt toxins. Recently discovered cadherin-based Bt Cry synergists showed the potential to augment resistance management by improving efficacy of Cry toxins. However, the mode of action of Bt Cry synergists is thus far unclear. Here we elucidate the mechanism of cadherin-based Cry toxin synergism utilizing two cadherin peptides, Spodoptera frugiperda Cad (SfCad) and Manduca sexta Cad (MsCad), which differentially enhance Cry1Fa toxicity to Spodoptera frugiperda neonates. We show that differential SfCad- and MsCad-mediated protection of Cry1Fa toxin in the Spodoptera frugiperda midgut correlates with differential Cry1Fa toxicity enhancement. Both peptides exhibited high affinity for Cry1Fa toxin and an increased rate of Cry1Fa-induced pore formation in S. frugiperda. However, only SfCad bound the S. frugiperda brush border membrane vesicle and more effectively prolonged the stability of Cry1Fa toxin in the gut, explaining higher Cry1Fa enhancement by this peptide. This study shows that cadherin fragments may enhance B. thuringiensis toxicity by at least two different mechanisms or a combination thereof: (i) protection of Cry toxin from protease degradation in the insect midgut and (ii) enhancement of pore-forming ability of Cry toxin.


Assuntos
Proteínas de Bactérias/toxicidade , Caderinas/antagonistas & inibidores , Endotoxinas/toxicidade , Proteínas Hemolisinas/toxicidade , Inibidores de Proteases/toxicidade , Spodoptera/efeitos dos fármacos , Animais , Toxinas de Bacillus thuringiensis , Sinergismo Farmacológico , Trato Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/enzimologia , Humanos , Larva/efeitos dos fármacos , Manduca/efeitos dos fármacos
9.
Insect Sci ; 29(5): 1346-1360, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35358364

RESUMO

Anopheles gambiae and Anopheles coluzzii are closely related species that are predominant vectors of malaria in Africa. Recently, A. gambiae form M was renamed A. coluzzii and we now conclude on the basis of a diagnostic PCR-restriction fragment length polymorphism assay that Ag55 cells were derived from A. coluzzii. We established an Ag55 cell transcriptome, and KEGG pathway analysis showed that Ag55 cells are enriched in phagosome pathway transcripts. The Ag55 transcriptome has an abundance of specific transcripts characteristic of mosquito hemocytes. Functional E. coli bioparticle uptake experiments visualized by fluorescence microscopy and confocal microscopy and quantified by flow cytometry establish the phagocytic competence of Ag55 cells. Results from this investigation of Ag55 cell properties will guide researchers in the use and engineering of the Ag55 cell line to better enable investigations of Plasmodium, other microbes, and insecticidal toxins.


Assuntos
Anopheles , Animais , Anopheles/genética , Linhagem Celular , Escherichia coli , Expressão Gênica , Hemócitos , Mosquitos Vetores/genética
10.
Insect Sci ; 29(3): 801-816, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34586709

RESUMO

Pesticide resistance and resurgence are serious problems often occurring simultaneously in the field. In our long-term study of a fenpropathrin-resistant strain of Tetranychus cinnabaribus, enhancement of detoxification and modified fecundity mechanisms were both observed. Here we investigate the network across these two mechanisms and find a key node between resistance and resurgence. We show that the ecdysone pathway is involved in regulating the fecundity of T. cinnabaribus. The concentration change of ecdysone is consistent with the fecundity curve; the concentration of ecdysone is higher in the fenpropathrin-resistant strain which has stronger fecundity. The enhancement of ecdysone is due to overexpression of two P450 genes (CYP314A1 and CYP315A1) in the ecdysone synthesis pathway. Silencing expression of these CYP genes resulted in lower concentration of ecdysone, reduced expression of vitellogenin, and reduced fecundity of T. cinnabaribus. The expression of CYP315A1 is regulated by transcription factors Cap-n-collar isoform C (CncC) and Musculoaponeurotic fibrosarcoma protein (Maf), which are involved in regulating other P450 genes functioning in detoxification of fenpropathrin in T. cinnabaribus. A similar regulation is established in citrus pest mite Panonychus citri showing that the CncC pathway regulates expression of PcCYP315A1, which affects mite fecundity. Transcription factors are activated to upregulate detoxification genes facilitating pesticide resistance, while the "one to multiple" regulation mode of transcription factors simultaneously increases expression of metabolic enzyme genes in hormone pathways and alters the physiology of pests. This is an important response of arthropods to pesticides which leads to resistance and population resurgence.


Assuntos
Fibrossarcoma , Ácaros , Praguicidas , Tetranychidae , Animais , Ecdisona , Ácaros/genética , Tetranychidae/genética , Fatores de Transcrição/genética
11.
Insect Sci ; 28(5): 1452-1467, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33017097

RESUMO

Identifying novel biocontrol agents and developing new strategies are urgent goals in insect pest biocontrol. Ascoviruses are potential competent insect viruses that may be developed into bioinsecticides, but this aim is impeded by their poor oral infectivity. To improve the per os infectivity of ascovirus, Bacillus thuringiensis kurstaki (Btk) was employed as a helper to damage the midgut of lepidopteran larvae (Helicoverpa armigera, Mythimna separata, Spodoptera frugiperda, and S. litura) in formulations with Heliothis virescens ascovirus isolates (HvAV-3h and HvAV-3j). Btk and ascovirus mixtures (Btk/HvAV-3h and Btk/HvAV-3j) were fed to insect larvae (3rd instar). With the exception of S. frugiperda larvae, which exhibited low mortality after ingesting Btk, the larvae of the other tested species showed three types of response to feeding on the formulas: type I, the tested larvae (H. armigera) were killed by Btk infection so quickly that insufficient time and resources remained for ascoviral invasion; type II, both Btk and the ascovirus were depleted by their competition, such that neither was successfully released or colonized the tissue; type III, Btk was eliminated by the ascovirus, and the ascovirus achieved systemic infection in the tested larvae. The feeding of Btk/ascovirus formulas led to a great reduction in larval diet consumption and resulted in a significant decrease in the emergence rate of H. armigera, M. separata, and S. litura larvae, which suggested that the formulas exerted marked oral control effects on both the contemporary individuals and the next generation of these tested pest species.


Assuntos
Ascoviridae , Bacillus thuringiensis , Controle de Insetos , Mariposas , Animais , Ascoviridae/patogenicidade , Agentes de Controle Biológico , Larva , Mariposas/virologia , Spodoptera/virologia
12.
Biochemistry ; 49(39): 8512-9, 2010 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-20809561

RESUMO

Cry11Ba produced by Bacillus thuringiensis subsp. jegathesan is an active toxin for larvae of the mosquito Anopheles gambiae. A 106-kDa aminopeptidase N (APN), called AgAPN2, was previously identified as a Cry11Ba receptor in A. gambiae. A 70-kDa fragment of AgAPN2 expressed in Escherichia coli binds Cry11Ba with high affinity (K(d) = 6.4 nM) and inhibits Cry11Ba activity by 98% in bioassays [Zhang et al. (2008) Biochemistry 47, 11263-11272]. To identify regions involved in toxicity, we truncated the 70-kDa APN fragment into peptides of 28- and 30-kDa ta and tb, respectively, and tested their abilities to mediate toxicity and bind Cry11Ba. While AgAPN2ta reduced Cry11Ba toxicity by 85%, AgAPN2tb showed a significant enhancement effect on Cry11Ba toxicity. The purified peptides showed evidence of structural folding and bound the same site(s) on Cry11Ba with high affinity. The inhibitory AgAPN2ta blocked Cry11Ba binding to brush border membrane vesicles (BBMV) of A. gambiae whereas the toxicity enhancing AgAPN2tb increased Cry11Ba binding on BBMV. A deletion at the N-terminus ((336)S-P(420)) of AgAPN2ta significantly reduced AgAPN2ta binding to Cry11Ba and its inhibitory effect. Deletion of the central region ((676)I-W(760)) of AgAPN2tb eliminated its increased toxin binding and toxicity enhancement effect without affecting Cry11Ba binding. A "bridge" model is proposed for AgAPN2tb action whereby the peptide binds Cry11Ba and vectors it to sites on the larval midgut.


Assuntos
Anopheles/enzimologia , Anopheles/microbiologia , Bacillus thuringiensis/metabolismo , Toxinas Bacterianas/toxicidade , Antígenos CD13/química , Antígenos CD13/metabolismo , Animais , Toxinas Bacterianas/antagonistas & inibidores , Toxinas Bacterianas/metabolismo , Larva/microbiologia , Larva/fisiologia , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica
13.
J Proteomics ; 227: 103918, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32712372

RESUMO

Bacterial insecticidal proteins, such as the Bin toxin from Lysinibacillus sphaericus, could be used more extensively to control insecticide resistant mosquitoes. This study was aimed at identification of mosquito cell proteins binding Bin toxin. Results showed that purified toxin was toxic to Anopheles gambiae larvae and Ag55 cultured cells. Clathrin heavy chain (an endocytosis protein) and glycolytic enzymes such as pyruvate kinase, enolase and dihydrolipoamide dehydrogenase were identified as binders of Bin toxin. The viability of Ag55 cells in the presence of endocytosis inhibitor, pitstop2, was significantly decreased upon Bin treatment, while the inhibitor chlorpromazine did not affect Bin toxicity. Bin toxin treatment decreased ATP production and mitochondrial respiration in Ag55 cells, whereas non-mitochondrial oxygen consumption significantly increased after Bin toxin treatment. These findings are steps towards understanding how Bin toxin kills mosquitoes. SIGNIFICANCE: Mosquitoes are vectors of pathogens causing human diseases such as dengue fever, yellow fever, zika virus and malaria. An insecticidal toxin from Lysinibacillus sphaericus called Binary, or Bin, toxin could be used more extensively to control insecticide resistant mosquitoes. Bin toxin enter cells in susceptible mosquitoes and induces apoptosis or autophagy. In the current research, we used the malaria mosquito Anopheles gambiae Ag55 cell line as a model. A proteomic-based approach identified proteins that interact with Bin toxin. Interacting proteins include clathrin heavy chain (endocytosis protein) and glycolysis enzymes such as pyruvate kinase, enolase and dihydrolipoamide dehydrogenase. In Ag55 cell toxicity assays, an endocytosis inhibitor, pitstop2, increased Bin toxicity. Real time assays with a Seahorse™ flux analyzer showed that Bin significantly affects mitochondrial respiration, a result consistent with cell death via apoptosis or autophagy. These research findings add insights into how an unusual binary protein exploits cellular machinery to kill mosquitoes.


Assuntos
Toxinas Bacterianas , Culex , Malária , Infecção por Zika virus , Zika virus , Animais , Bacillaceae , Proteínas de Transporte , Linhagem Celular , Humanos , Larva , Controle de Mosquitos , Mosquitos Vetores , Proteômica
14.
Biochemistry ; 48(41): 9785-93, 2009 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-19747003

RESUMO

Alkaline phosphatases (ALPs, EC 3.1.3.1) isolated from lepidopteran and dipteran species are identified as receptors for Cry1Ac and Cry11Aa toxins, respectively [Jurat-Fuentes, J. L., and Adang, M. J. (2004) Eur. J. Biochem. 7, 3127-3135; Fernandez, L. E., et al. (2006) Biochem. J. 396, 77-84]. In our study, an alkaline phosphatase cDNA (AgALP1) was cloned from the midgut of Anopheles gambiae larvae. The encoded 63 kDa protein has a predicted glycosylphosphatidylinositol (GPI) anchor omega-site ((526)Asp), an N-glycosylation site ((239)Asn-Leu-Thr), and an O-glycosylation site ((312)Ser). AgALP1(t) was expressed in Escherichia coli and used to prepare antiserum and to analyze the interaction of AgALP with mosquitocidal Cry11Ba toxin. Anti-AgALP serum localized AgALP to the apical brush border in the anterior and posterior midgut of larvae and detected a 65 kDa species on a blot of brush border membrane vesicles (BBMVs) protein prepared from larvae. ALP activity was released from larval BBMVs prepared by phosphatidylinositol-specific phospholipase C (PIPLC) treatment, and after separation by two-dimensional gel electrophoresis and blotting, a chain of doublet spots at 65 kDa was detected by anti-AgALP. A subset of these doublet spots bound Cry11Ba on a reprobed blot. Heterologously expressed AgALP1(t) bound [(125)I]Cry11Ba on dot blots and reduced the level of binding of [(125)I]Cry11Ba to brush border membrane vesicles by 41%, a percentage comparable to that of unlabeled Cry11Ba and aminopeptidase AgAPN2(t1) peptide. AgALP1(t) binds Cry11Ba toxin with a high affinity (23.9 nM) and shares a binding site on Cry11Ba with AgAPN2(t1). In bioassays against An. gambiae larvae, the presence of AgALP1(t) reduced larval mortality from 78 to 8%. We conclude that AgALP1 is a binding protein and a functional receptor for Cry11Ba toxin.


Assuntos
Fosfatase Alcalina/metabolismo , Anopheles/enzimologia , Sequência de Aminoácidos , Aminopeptidases/metabolismo , Animais , Anopheles/genética , Bacillus thuringiensis/química , Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Sítios de Ligação , Clonagem Molecular , Biologia Computacional , Sequência Conservada , Primers do DNA , Dípteros , Endotoxinas/química , Endotoxinas/genética , Endotoxinas/metabolismo , Proteínas Hemolisinas/química , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Lepidópteros , Dados de Sequência Molecular , Controle Biológico de Vetores , Reação em Cadeia da Polimerase
15.
Appl Environ Microbiol ; 75(10): 3086-92, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19329664

RESUMO

The Cry3Aa and Cry3Bb insecticidal proteins of Bacillus thuringiensis are used in biopesticides and transgenic crops to control larvae of leaf-feeding beetles and rootworms. Cadherins localized in the midgut epithelium are identified as receptors for Cry toxins in lepidopteran and dipteran larvae. Previously, we discovered that a peptide of a toxin-binding cadherin expressed in Escherichia coli functions as a synergist for Cry1A toxicity against lepidopteran larvae and Cry4 toxicity against dipteran larvae. Here we report that the fragment containing the three most C-terminal cadherin repeats (CR) from the cadherin of the western corn rootworm binds toxin and enhances Cry3 toxicity to larvae of naturally susceptible species. The cadherin fragment (CR8 to CR10 [CR8-10]) of western corn rootworm Diabrotica virgifera virgifera was expressed in E. coli as an inclusion body. By an enzyme-linked immunosorbent microplate assay, we demonstrated that the CR8-10 peptide binds alpha-chymotrypsin-treated Cry3Aa and Cry3Bb toxins at high affinity (11.8 nM and 1.4 nM, respectively). Coleopteran larvae ingesting CR8-10 inclusions had increased susceptibility to Cry3Aa or Cry3Bb toxin. The Cry3 toxin-enhancing effect of CR8-10 was demonstrated for Colorado potato beetle Leptinotarsa decemlineata, southern corn rootworm Diabrotica undecimpunctata howardi, and western corn rootworm. The extent of Cry3 toxin enhancement, which ranged from 3- to 13-fold, may have practical applications for insect control. Cry3-containing biopesticides that include a cadherin fragment could be more efficacious. And Bt corn (i.e., corn treated with B. thuringiensis to make it resistant to pests) coexpressing Cry3Bb and CR8-10 could increase the functional dose level of the insect toxic activity, reducing the overall resistance risk.


Assuntos
Proteínas de Bactérias/farmacologia , Caderinas/farmacologia , Besouros/efeitos dos fármacos , Endotoxinas/farmacologia , Proteínas Hemolisinas/farmacologia , Proteínas de Insetos/farmacologia , Praguicidas/farmacologia , Animais , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/genética , Caderinas/genética , Sinergismo Farmacológico , Endotoxinas/genética , Proteínas Hemolisinas/genética , Proteínas de Insetos/genética , Larva/efeitos dos fármacos , Dose Letal Mediana , Análise de Sobrevida
16.
Appl Environ Microbiol ; 75(22): 7280-2, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19801487

RESUMO

A peptide from cadherin AgCad1 of Anopheles gambiae larvae was reported as a synergist of Bacillus thuringiensis subsp. israelensis Cry4Ba's toxicity to the Anopheles mosquito (G. Hua, R. Zhang, M. A. Abdullah, and M. J. Adang, Biochemistry 47:5101-5110, 2008). We report that CR11 to the membrane proximal extracellular domain (MPED) (CR11-MPED) and a longer peptide, CR9 to CR11 (CR9-11), from AgCad1 act as synergists of Cry4Ba's toxicity to Aedes aegypti larvae, but a Diabrotica virgifera virgifera cadherin-based synergist of Cry3 (Y. Park, M. A. F. Abdullah, M. D. Taylor, K. Rahman, and M. J. Adang, Appl. Environ. Microbiol. 75:3086-3092, 2009) did not affect Cry4Ba's toxicity. Peptides CR9-11 and CR11-MPED bound Cry4Ba with high affinity (13 nM and 23 nM, respectively) and inhibited Cry4Ba binding to the larval A. aegypti brush border membrane. The longer CR9-11 fragment was more potent than CR11-MPED in enhancing Cry4Ba against A. aegypti.


Assuntos
Aedes/efeitos dos fármacos , Anopheles , Bacillus thuringiensis/química , Proteínas de Bactérias/toxicidade , Caderinas/toxicidade , Endotoxinas/toxicidade , Proteínas Hemolisinas/toxicidade , Inseticidas , Controle de Mosquitos , Animais , Anopheles/química , Toxinas de Bacillus thuringiensis , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Proteínas Hemolisinas/farmacologia , Larva/efeitos dos fármacos , Ligação Proteica
17.
Toxins (Basel) ; 11(7)2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31269670

RESUMO

Cry3Bb toxin from Bacillus thuringiensis is an important insecticidal protein due to its potency against coleopteran pests, especially rootworms. Cadherin, a protein in the insect midgut epithelium, is a receptor of Cry toxins; in some insect species toxin-binding domains of cadherins-synergized Cry toxicity. Previously, we reported that the DvCad1-CR8-10 fragment of Diabrotica virgifera virgifera cadherin-like protein (GenBank Accession #EF531715) enhanced Cry3Bb toxicity to the Colorado Potato Beetle (CPB), Leptinotarsadecimlineata (L. decimlineata). We report that individual CR domains of the DvCad1-CR8-10 fragment were found to have strong binding affinities to α-chymotrypsin-treated Cry3Bb. The dissociation constant (Kd) of Cry3Bb binding to the CR8, CR9, and CR10 domain was 4.9 nM, 28.2 nM, and 4.6 nM, respectively. CR8 and CR10, but not CR9, enhanced Cry3Bb toxicity against L. decimlineata and the lesser mealworm Alphitobius diaperinus neonates. In-frame deletions of the DvCad1-CR10 open reading frame defined a high-affinity binding and synergistic site to a motif in residues I1226-D1278. A 26 amino acid peptide from the high affinity Cry3Bb-binding region of CR10 functioned as a Cry3Bb synergist against coleopteran larvae.


Assuntos
Caderinas/metabolismo , Besouros/efeitos dos fármacos , Endotoxinas/toxicidade , Proteínas de Insetos/metabolismo , Peptídeos/toxicidade , Tenebrio/efeitos dos fármacos , Animais , Sítios de Ligação , Larva/efeitos dos fármacos , Controle Biológico de Vetores
18.
Biochemistry ; 47(43): 11263-72, 2008 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-18826260

RESUMO

Bacillus thuringiensis (Bt) insecticidal toxins bind to receptors on midgut epithelial cells of susceptible insects, and binding triggers biochemical events that lead to insect mortality. Recently, a 100-kDa aminopeptidase N (APN) was isolated from brush border membrane vesicles (BBMV) of Anopheles quadrimaculatus and shown to bind Cry11Ba toxin with surface plasmon resonance (SPR) detection [Abdullah et al. (2006) BMC Biochem. 7, 16]. In our study, a 106-kDa APN, called AgAPN2, released by phosphatidylinositol-specific phospholipase C (PI-PLC) from Anopheles gambiae BBMV was extracted by Cry11Ba bound to beads. The AgAPN2 cDNA was cloned, and analysis of the predicted AgAPN2 protein revealed a zinc-binding motif (HEIAH), three potential N-glycosylation sites, and a predicted glycosylphosphatidylinositol (GPI) anchor site. Immunohistochemistry localized AgAPN2 to the microvilli of the posterior midgut. A 70-kDa fragment of the 106-kDa APN was expressed in Escherichia coli. When purified, it competitively displaced 125I-Cry11Ba binding to An. gambiae BBMV and bound Cry11Ba on dot blot and microtiter plate binding assays with a calculated K d of 6.4 nM. Notably, this truncated peptide inhibited Cry11Ba toxicity to An. gambiae larvae. These results are evidence that the 106-kDa GPI-anchored APN is a specific binding protein, and a putative midgut receptor, for Bt Cry11Ba toxin.


Assuntos
Anopheles/metabolismo , Bacillus thuringiensis/metabolismo , Proteínas de Bactérias/metabolismo , Antígenos CD13/metabolismo , Endotoxinas/metabolismo , Proteínas Hemolisinas/metabolismo , Inseticidas/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Anopheles/genética , Bacillus thuringiensis/genética , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/genética , Proteínas de Bactérias/farmacologia , Antígenos CD13/química , Antígenos CD13/genética , Endotoxinas/genética , Endotoxinas/farmacologia , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/farmacologia , Larva/enzimologia , Dados de Sequência Molecular , Peso Molecular , Filogenia , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
19.
Biochemistry ; 47(18): 5101-10, 2008 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-18407662

RESUMO

A midgut cadherin AgCad1 cDNA was cloned from Anopheles gambiae larvae and analyzed for its possible role as a receptor for the Cry4Ba toxin of Bacillus thuringiensis strain israelensis. The AgCad1 cadherin encodes a putative 1735-residue protein organized into an extracellular region of 11 cadherin repeats (CR) and a membrane-proximal extracellular domain (MPED). AgCad1 mRNA was detected in midgut of larvae by polymerase chain reaction (PCR). The AgCad1 protein was localized, by immunochemistry of sectioned larvae, predominately to the microvilli in posterior midgut. The localization of Cry4Ba binding was determined by the same technique, and toxin bound microvilli in posterior midgut. The AgCad1 protein was present in brush border membrane fractions prepared from larvae, and Cry4Ba toxin bound the same-sized protein on blots of those fractions. The AgCad1 protein was expressed transiently in Drosophila melanogaster Schneider 2 (S2) cells. 125I-Cry4Ba toxin bound AgCad1 from S2 cells in a competitive manner. Cry4Ba bound to beads extracted 200 kDa AgCad1 and a 29 kDa fragment of AgCad1 from S2 cells. A peptide containing the AgCad1 region proximal to the cell (CR11-MPED) was expressed in Escherichia coli. Although Cry4Ba showed limited binding to CR11-MPED, the peptide synergized the toxicity of Cry4Ba to larvae. AgCad1 in the larval brush border is a binding protein for Cry4Ba toxin. On the basis of binding results and CR11-MPED synergism of Cry4Ba toxicity, AgCad1 is probably a Cry4Ba receptor.


Assuntos
Anopheles/metabolismo , Bacillus thuringiensis/metabolismo , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Caderinas/metabolismo , Caderinas/toxicidade , Endotoxinas/metabolismo , Proteínas Hemolisinas/metabolismo , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/toxicidade , Sequência de Aminoácidos , Animais , Anopheles/efeitos dos fármacos , Anopheles/genética , Toxinas de Bacillus thuringiensis , Caderinas/genética , Caderinas/isolamento & purificação , Clonagem Molecular , Sistema Digestório/metabolismo , Drosophila melanogaster , Regulação da Expressão Gênica , Larva/efeitos dos fármacos , Dados de Sequência Molecular , Peso Molecular , Ligação Proteica
20.
Insect Sci ; 25(6): 928-945, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28636268

RESUMO

Global climate change and acquired resistance to insecticides are threats to world food security. Drosophila suzukii, a devastating invasive pest in many parts of the world, causes substantial economic losses to fruit production industries, forcing farmers to apply broad-spectrum insecticides frequently. This could lead to the development of insecticide resistance. We determined the Lethal Concentration 50 (median lethal concentration, LC50 ) values of zeta-cypermethrin, spinosad, and malathion insecticides against D. suzukii colonies established from Clarke and Pierce county Georgia, United States. The LC50 values were 3 fold higher in the Pierce county population for all insecticide treatments. We then used RNA sequencing to analyze the responses of Pierce and Clarke population flies surviving a LC50 treatment of the 3 insecticides. We identified a high number of differentially expressed genes that are likely involved in detoxification and reduced cuticular penetration, especially in the Pierce population, with extensive overlap in differentially expressed genes between the 3 insecticide treatments. Finally, we predicted fewer nonsynonymous single nucleotide variants having deleterious effects on protein function among detoxification, insecticide target, and cuticular protein encoding genes in Pierce flies. Thus a combination of increased gene expression and fewer deleterious single nucleotide variants highlights molecular mechanisms underlying the higher LC50 values for Pierce population flies.


Assuntos
Drosophila/genética , Sequenciamento de Nucleotídeos em Larga Escala , Inseticidas , Análise de Sequência de RNA , Animais , Perfilação da Expressão Gênica , Ontologia Genética , Genes de Insetos/genética , Especificidade da Espécie , Regulação para Cima/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA