Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(44): e2203150119, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36306328

RESUMO

This study explores how researchers' analytical choices affect the reliability of scientific findings. Most discussions of reliability problems in science focus on systematic biases. We broaden the lens to emphasize the idiosyncrasy of conscious and unconscious decisions that researchers make during data analysis. We coordinated 161 researchers in 73 research teams and observed their research decisions as they used the same data to independently test the same prominent social science hypothesis: that greater immigration reduces support for social policies among the public. In this typical case of social science research, research teams reported both widely diverging numerical findings and substantive conclusions despite identical start conditions. Researchers' expertise, prior beliefs, and expectations barely predict the wide variation in research outcomes. More than 95% of the total variance in numerical results remains unexplained even after qualitative coding of all identifiable decisions in each team's workflow. This reveals a universe of uncertainty that remains hidden when considering a single study in isolation. The idiosyncratic nature of how researchers' results and conclusions varied is a previously underappreciated explanation for why many scientific hypotheses remain contested. These results call for greater epistemic humility and clarity in reporting scientific findings.


Assuntos
Análise de Dados , Pesquisadores , Humanos , Incerteza , Reprodutibilidade dos Testes
2.
BMC Vet Res ; 20(1): 367, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39148099

RESUMO

BACKGROUND: Recurrent dehydration causes chronic kidney disease in humans and animal models. The dromedary camel kidney has remarkable capacity to preserve water and solute during long-term dehydration. In this study, we investigated the effects of dehydration and subsequent rehydration in the camel's kidney histology/ultrastructure and changes in aquaporin/solute carrier proteins along with gene expression. RESULTS: In light microscopy, dehydration induced few degenerative and necrotic changes in cells of the cortical tubules with unapparent or little effect on medullary cells. The ultrastructural changes encountered in the cortex were infrequent during dehydration and included nuclear chromatin condensation, cytoplasmic vacuolization, mitochondrial swelling, endoplasmic reticulum/ lysosomal degeneration and sometimes cell death. Some mRNA gene expressions involved in cell stability were upregulated by dehydration. Lesions in endothelial capillaries, glomerular membranes and podocyte tertiary processes in dehydrated camels indicated disruption of glomerular filtration barrier which were mostly corrected by rehydration. The changes in proximal tubules brush borders after dehydration, were accompanied by down regulation of ATP1A1 mRNA involved in Na + /K + pump that were corrected by rehydration. The increased serum Na, osmolality and vasopressin were paralleled by modulation in expression level for corresponding SLC genes with net Na retention in cortex which were corrected by rehydration. Medullary collecting ducts and interstitial connective tissue were mostly unaffected during dehydration. CKD, a chronic nephropathy induced by recurrent dehydration in human and animal models and characterized by interstitial fibrosis and glomerular sclerosis, were not observed in the dehydrated/rehydrated camel kidneys. The initiating factors, endogenous fructose, AVP/AVPR2 and uric acid levels were not much affected. TGF-ß1 protein and TGF-ß1gene expression showed no changes by dehydration in cortex/medulla to mediate fibrosis. KCNN4 gene expression level was hardly detected in the dehydrated camel's kidney; to encode for Ca + + -gated KCa3.1 channel for Ca + + influx to instigate TGF-ß1. Modulation of AQP 1, 2, 3, 4, 9 and SLC protein and/or mRNAs expression levels during dehydration/rehydration was reported. CONCLUSIONS: Long-term dehydration induces reversible or irreversible ultrastructural changes in kidney cortex with minor effects in medulla. Modulation of AQP channels, SLC and their mRNAs expression levels during dehydration/rehydration have a role in water conservation. Cortex and medulla respond differently to dehydration/rehydration.


Assuntos
Aquaporinas , Camelus , Desidratação , Rim , Animais , Desidratação/veterinária , Aquaporinas/metabolismo , Aquaporinas/genética , Rim/patologia , Rim/metabolismo , Masculino , Hidratação/veterinária , Regulação da Expressão Gênica , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética
3.
Proc Natl Acad Sci U S A ; 117(15): 8398-8403, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32229555

RESUMO

How predictable are life trajectories? We investigated this question with a scientific mass collaboration using the common task method; 160 teams built predictive models for six life outcomes using data from the Fragile Families and Child Wellbeing Study, a high-quality birth cohort study. Despite using a rich dataset and applying machine-learning methods optimized for prediction, the best predictions were not very accurate and were only slightly better than those from a simple benchmark model. Within each outcome, prediction error was strongly associated with the family being predicted and weakly associated with the technique used to generate the prediction. Overall, these results suggest practical limits to the predictability of life outcomes in some settings and illustrate the value of mass collaborations in the social sciences.


Assuntos
Ciências Sociais/normas , Adolescente , Criança , Pré-Escolar , Estudos de Coortes , Família , Feminino , Humanos , Lactente , Vida , Aprendizado de Máquina , Masculino , Valor Preditivo dos Testes , Ciências Sociais/métodos , Ciências Sociais/estatística & dados numéricos
4.
Biomedicines ; 12(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38255204

RESUMO

Type 2 diabetes mellitus (T2DM) and Alzheimer's disease (AD) are chronic, progressive disorders affecting the elderly, which fosters global healthcare concern with the growing aging population. Both T2DM and AD have been linked with increasing age, advanced glycosylation end products, obesity, and insulin resistance. Insulin resistance in the periphery is significant in the development of T2DM and it has been posited that insulin resistance in the brain plays a key role in AD pathogenesis, earning AD the name "type 3 diabetes". These clinical and epidemiological links between AD and T2DM have become increasingly pronounced throughout the years, and serve as a means to investigate the effects of antidiabetic therapies in AD, such as metformin, intranasal insulin, incretins, DPP4 inhibitors, PPAR-γ agonists, SGLT2 inhibitors. The majority of these drugs have shown benefit in preclinical trials, and have shown some promising results in clinical trials, with the improvement of cognitive faculties in participants with mild cognitive impairment and AD. In this review, we have summarize the benefits, risks, and conflicting data that currently exist for diabetic drugs being repurposed for the treatment of AD.

5.
Front Vet Sci ; 10: 1236425, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38116506

RESUMO

Introduction: Dromedary camels robustly withstand dehydration, and the rough desert environment but the adaptation mechanisms are not well understood. One of these mechanisms is that the dromedary camel increases its body temperature to reduce the process of evaporative cooling during the hot weather. Stress in general, has deleterious effects in the body. In this study, we sought to determine the effects of dehydration and rehydration on stress parameters in the dromedary camels and how it pacifies these effects. Methods: Nineteen male camels were randomly divided into control, dehydrated and rehydrated groups, and fed alfalfa hay ad-libitum. The dehydrated and rehydrated groups were water-restricted for 20 days after which the rehydrated camels were provided with water for 72 h. The control and dehydrated camels were slaughtered at day 20 from the start of experiment whereas the rehydrated group was killed 72 h later. Many biochemical, hematological histopathological parameters and gene analysis were performed in relevant tissues collected including blood, plasma, and tissues. Results and discussion: It was observed that severely dehydrated camels lost body weight, passed very hard feces, few drops of concentrated urine, and were slightly stressed as reflected behaviorally by loss of appetite. Physiologically, the stress of dehydration elicited modulation of plasma stress hormones for water preservation and energy supply. Our results showed significant increase in cortisol, norepinephrine and dopamine, and significant decrease in epinephrine and serotonin. The significant increase in malondialdehyde was accompanied with significant increase in antioxidants (glutathione, retinol, thiamin, tocopherol) to provide tissue protection from oxidative stress. The physiological blood changes observed during dehydration serve different purposes and were quickly restored to normality by rehydration. The dehydrated/rehydrated camels showed reduced hump size and serous atrophy of perirenal and epicardial fat. The latter changes were accompanied by significantly increased expression of genes encoding proteins for energy production (ANGPTL4, ACSBG1) from fat and significantly decreased expression of genes (THRSP; FADS 1&2) encoding proteins enhancing energy expenditure. This process is vital for camel survival in the desert. Dehydration induced no major effects in the vital organs. Only minor degenerative changes were observed in hepatic and renal cells, physiological cardiomyocyte hypertrophy in heart and follicular hyperplasia in splenic but lipidosis was not depicted in liver hepatocytes. Ketone bodies were not smelled in urine, sweat and breathing of dehydrated animals supporting the previous finding that the ß hydroxybutyrate dehydrogenase, a key enzyme in ketone body formation, is low in the camel liver and rumen. Rehydration restored most of blood and tissues to normal or near normal. In conclusion, camels are adapted to combat dehydration stress and anorexia by increasing anti-stressors and modulating genes involved in fat metabolism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA