Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Methods ; 13(4): 310-8, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26901648

RESUMO

It remains unclear whether causal, rather than merely correlational, relationships in molecular networks can be inferred in complex biological settings. Here we describe the HPN-DREAM network inference challenge, which focused on learning causal influences in signaling networks. We used phosphoprotein data from cancer cell lines as well as in silico data from a nonlinear dynamical model. Using the phosphoprotein data, we scored more than 2,000 networks submitted by challenge participants. The networks spanned 32 biological contexts and were scored in terms of causal validity with respect to unseen interventional data. A number of approaches were effective, and incorporating known biology was generally advantageous. Additional sub-challenges considered time-course prediction and visualization. Our results suggest that learning causal relationships may be feasible in complex settings such as disease states. Furthermore, our scoring approach provides a practical way to empirically assess inferred molecular networks in a causal sense.


Assuntos
Causalidade , Redes Reguladoras de Genes , Neoplasias/genética , Mapeamento de Interação de Proteínas/métodos , Software , Biologia de Sistemas , Algoritmos , Biologia Computacional , Simulação por Computador , Perfilação da Expressão Gênica , Humanos , Modelos Biológicos , Transdução de Sinais , Células Tumorais Cultivadas
2.
Bioinformatics ; 34(11): 1859-1867, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29342249

RESUMO

Motivation: Current bioinformatics methods to detect changes in gene isoform usage in distinct phenotypes compare the relative expected isoform usage in phenotypes. These statistics model differences in isoform usage in normal tissues, which have stable regulation of gene splicing. Pathological conditions, such as cancer, can have broken regulation of splicing that increases the heterogeneity of the expression of splice variants. Inferring events with such differential heterogeneity in gene isoform usage requires new statistical approaches. Results: We introduce Splice Expression Variability Analysis (SEVA) to model increased heterogeneity of splice variant usage between conditions (e.g. tumor and normal samples). SEVA uses a rank-based multivariate statistic that compares the variability of junction expression profiles within one condition to the variability within another. Simulated data show that SEVA is unique in modeling heterogeneity of gene isoform usage, and benchmark SEVA's performance against EBSeq, DiffSplice and rMATS that model differential isoform usage instead of heterogeneity. We confirm the accuracy of SEVA in identifying known splice variants in head and neck cancer and perform cross-study validation of novel splice variants. A novel comparison of splice variant heterogeneity between subtypes of head and neck cancer demonstrated unanticipated similarity between the heterogeneity of gene isoform usage in HPV-positive and HPV-negative subtypes and anticipated increased heterogeneity among HPV-negative samples with mutations in genes that regulate the splice variant machinery. These results show that SEVA accurately models differential heterogeneity of gene isoform usage from RNA-seq data. Availability and implementation: SEVA is implemented in the R/Bioconductor package GSReg. Contact: bahman@jhu.edu or favorov@sensi.org or ejfertig@jhmi.edu. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Processamento Alternativo , Neoplasias/genética , Isoformas de Proteínas/genética , Análise de Sequência de RNA/métodos , Software , Biologia Computacional/métodos , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço/genética , Humanos , Modelos Genéticos
3.
Bioinformatics ; 31(2): 273-4, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25262153

RESUMO

UNLABELLED: k-Top Scoring Pairs (kTSP) is a classification method for prediction from high-throughput data based on a set of the paired measurements. Each of the two possible orderings of a pair of measurements (e.g. a reversal in the expression of two genes) is associated with one of two classes. The kTSP prediction rule is the aggregation of voting among such individual two-feature decision rules based on order switching. kTSP, like its predecessor, Top Scoring Pair (TSP), is a parameter-free classifier relying only on ranking of a small subset of features, rendering it robust to noise and potentially easy to interpret in biological terms. In contrast to TSP, kTSP has comparable accuracy to standard genomics classification techniques, including Support Vector Machines and Prediction Analysis for Microarrays. Here, we describe 'switchBox', an R package for kTSP-based prediction. AVAILABILITY: The 'switchBox' package is freely available from Bioconductor: http://www.bioconductor.org. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Algoritmos , Biomarcadores Tumorais/genética , Neoplasias da Mama/classificação , Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Recidiva Local de Neoplasia/diagnóstico , Neoplasias da Mama/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Recidiva Local de Neoplasia/genética , Máquina de Vetores de Suporte
4.
bioRxiv ; 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39386738

RESUMO

Kaposi sarcoma (KS) is defined by aberrant angiogenesis driven by Kaposi sarcoma herpesvirus (KSHV)-infected spindle cells with endothelial characteristics. KS research is hindered by rapid loss of KSHV infection upon explant culture of tumor cells. Here, we establish patient-derived KS xenografts (PDXs) upon orthotopic implantation of cutaneous KS biopsies in immunodeficient mice. KS tumors were maintained in 27/28 PDX until experimental endpoint, up to 272 days in the first passage of recipient mice. KSHV latency associated nuclear antigen (LANA)+ endothelial cell density increased by a mean 4.3-fold in 14/15 PDX analyzed by IHC at passage 1 compared to respective input biopsies, regardless of implantation variables and clinical features of patients. The Ki-67 proliferation marker colocalized with LANA more frequently in PDXs. Spatial transcriptome analysis revealed increased expression of viral transcripts from latent and lytic gene classes in the PDX. The expanded KSHV+ regions of the PDX maintained signature gene expression of KS tumors, with enrichment in pathways associated with angiogenesis and endothelium development. Cells with characteristics of tumor-associated fibroblasts derived from PDX were propagated for 15 passages. These fibroblast-like cells were permissive for de novo KSHV infection, and one lineage produced CXCL12, a cancer-promoting chemokine. Spatial analysis revealed that fibroblasts are a likely source of CXCL12 signaling to CXCR4 that was upregulated in KS regions. The reproducible expansion of KSHV-infected endothelial cells in PDX from multiple donors and recapitulation of a KS tumor gene signature supports the application of patient-derived KS mouse models for studies of pathogenesis and novel therapies.

5.
BMC Genomics ; 14: 336, 2013 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-23682826

RESUMO

BACKGROUND: A small number of prognostic and predictive tests based on gene expression are currently offered as reference laboratory tests. In contrast to such success stories, a number of flaws and errors have recently been identified in other genomic-based predictors and the success rate for developing clinically useful genomic signatures is low. These errors have led to widespread concerns about the protocols for conducting and reporting of computational research. As a result, a need has emerged for a template for reproducible development of genomic signatures that incorporates full transparency, data sharing and statistical robustness. RESULTS: Here we present the first fully reproducible analysis of the data used to train and test MammaPrint, an FDA-cleared prognostic test for breast cancer based on a 70-gene expression signature. We provide all the software and documentation necessary for researchers to build and evaluate genomic classifiers based on these data. As an example of the utility of this reproducible research resource, we develop a simple prognostic classifier that uses only 16 genes from the MammaPrint signature and is equally accurate in predicting 5-year disease free survival. CONCLUSIONS: Our study provides a prototypic example for reproducible development of computational algorithms for learning prognostic biomarkers in the era of personalized medicine.


Assuntos
Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Estudos de Coortes , Humanos , Prognóstico , Reprodutibilidade dos Testes , Software
6.
F1000Res ; 10: 1260, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-36204675

RESUMO

A Molecular Features Set (MFS), is a result of a vast diversity of bioinformatics pipelines. The lack of a "gold standard" for most experimental data modalities makes it difficult to provide valid estimation for a particular MFS's quality. Yet, this goal can partially be achieved by analyzing inner-sample Distance Matrices (DM) and their power to distinguish between phenotypes. The quality of a DM can be assessed by summarizing its power to quantify the differences of inner-phenotype and outer-phenotype distances. This estimation of the DM quality can be construed as a measure of the MFS's quality.  Here we propose Hobotnica, an approach to estimate MFSs quality by their ability to stratify data, and assign them significance scores, that allow for collating various signatures and comparing their quality for contrasting groups.


Assuntos
Biologia Computacional , Fenótipo
7.
Cancer Res ; 81(4): 1001-1013, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33408119

RESUMO

Adenoid cystic carcinoma (ACC) is the second most common malignancy of the salivary gland. Although characterized as an indolent tumor, ACC often leads to incurable metastatic disease. Patients with ACC respond poorly to currently available therapeutic drugs and factors contributing to the limited response remain unknown. Determining the role of molecular alterations frequently occurring in ACC may clarify ACC tumorigenesis and advance the development of effective treatment strategies. Applying Splice Expression Variant Analysis and outlier statistics on RNA sequencing of primary ACC tumors and matched normal salivary gland tissues, we identified multiple alternative splicing events (ASE) of genes specific to ACC. In ACC cells and patient-derived xenografts, FGFR1 was a uniquely expressed ASE. Detailed PCR analysis identified three novel, truncated, intracellular domain-lacking FGFR1 variants (FGFR1v). Cloning and expression analysis suggest that the three FGFR1v are cell surface proteins, that expression of FGFR1v augmented pAKT activity, and that cells became more resistant to pharmacologic FGFR1 inhibitor. FGFR1v-induced AKT activation was associated with AXL function, and inhibition of AXL activity in FGFR1v knockdown cells led to enhanced cytotoxicity in ACC. Moreover, cell killing effect was increased by dual inhibition of AXL and FGFR1 in ACC cells. This study demonstrates that these previously undescribed FGFR1v cooperate with AXL and desensitize cells to FGFR1 inhibitor, which supports further investigation into combined FGFR1 and AXL inhibition as an effective ACC therapy.This study identifies several FGFR1 variants that function through the AXL/AKT signaling pathway independent of FGF/FGFR1, desensitizing cells to FGFR1 inhibitor suggestive of a potential resistance mechanism in ACC. SIGNIFICANCE: This study identifies several FGFR1 variants that function through the AXL/AKT signaling pathway independent of FGF/FGFR1, desensitizing cells to FGFR1 inhibitor, suggestive of a potential resistance mechanism in ACC.


Assuntos
Carcinoma Adenoide Cístico/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Neoplasias das Glândulas Salivares/genética , Animais , Carcinoma Adenoide Cístico/metabolismo , Carcinoma Adenoide Cístico/patologia , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos Transgênicos , Isoformas de Proteínas/genética , Isoformas de Proteínas/isolamento & purificação , Isoformas de Proteínas/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor Cross-Talk/fisiologia , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/isolamento & purificação , Neoplasias das Glândulas Salivares/metabolismo , Neoplasias das Glândulas Salivares/patologia , Glândulas Salivares/metabolismo , Glândulas Salivares/patologia , Transdução de Sinais/genética , Receptor Tirosina Quinase Axl
8.
Elife ; 102021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33491650

RESUMO

Determining the etiologic basis of the mutations that are responsible for cancer is one of the fundamental challenges in modern cancer research. Different mutational processes induce different types of DNA mutations, providing 'mutational signatures' that have led to key insights into cancer etiology. The most widely used signatures for assessing genomic data are based on unsupervised patterns that are then retrospectively correlated with certain features of cancer. We show here that supervised machine-learning techniques can identify signatures, called SuperSigs, that are more predictive than those currently available. Surprisingly, we found that aging yields different SuperSigs in different tissues, and the same is true for environmental exposures. We were able to discover SuperSigs associated with obesity, the most important lifestyle factor contributing to cancer in Western populations.


Assuntos
Aprendizado de Máquina , Mutação , Neoplasias/etiologia , Obesidade/genética , Humanos , Neoplasias/genética
9.
BMC Bioinformatics ; 10: 256, 2009 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-19695104

RESUMO

BACKGROUND: A major challenge in computational biology is to extract knowledge about the genetic nature of disease from high-throughput data. However, an important obstacle to both biological understanding and clinical applications is the "black box" nature of the decision rules provided by most machine learning approaches, which usually involve many genes combined in a highly complex fashion. Achieving biologically relevant results argues for a different strategy. A promising alternative is to base prediction entirely upon the relative expression ordering of a small number of genes. RESULTS: We present a three-gene version of "relative expression analysis" (RXA), a rigorous and systematic comparison with earlier approaches in a variety of cancer studies, a clinically relevant application to predicting germline BRCA1 mutations in breast cancer and a cross-study validation for predicting ER status. In the BRCA1 study, RXA yields high accuracy with a simple decision rule: in tumors carrying mutations, the expression of a "reference gene" falls between the expression of two differentially expressed genes, PPP1CB and RNF14. An analysis of the protein-protein interactions among the triplet of genes and BRCA1 suggests that the classifier has a biological foundation. CONCLUSION: RXA has the potential to identify genomic "marker interactions" with plausible biological interpretation and direct clinical applicability. It provides a general framework for understanding the roles of the genes involved in decision rules, as illustrated for the difficult and clinically relevant problem of identifying BRCA1 mutation carriers.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Biologia Computacional/métodos , Regulação Neoplásica da Expressão Gênica , Genes BRCA1 , Feminino , Perfilação da Expressão Gênica , Humanos
10.
Cancer Res ; 79(19): 5102-5112, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31337651

RESUMO

Tumor heterogeneity provides a complex challenge to cancer treatment and is a critical component of therapeutic response, disease recurrence, and patient survival. Single-cell RNA-sequencing (scRNA-seq) technologies have revealed the prevalence of intratumor and intertumor heterogeneity. Computational techniques are essential to quantify the differences in variation of these profiles between distinct cell types, tumor subtypes, and patients to fully characterize intratumor and intertumor molecular heterogeneity. In this study, we adapted our algorithm for pathway dysregulation, Expression Variation Analysis (EVA), to perform multivariate statistical analyses of differential variation of expression in gene sets for scRNA-seq. EVA has high sensitivity and specificity to detect pathways with true differential heterogeneity in simulated data. EVA was applied to several public domain scRNA-seq tumor datasets to quantify the landscape of tumor heterogeneity in several key applications in cancer genomics such as immunogenicity, metastasis, and cancer subtypes. Immune pathway heterogeneity of hematopoietic cell populations in breast tumors corresponded to the amount of diversity present in the T-cell repertoire of each individual. Cells from head and neck squamous cell carcinoma (HNSCC) primary tumors had significantly more heterogeneity across pathways than cells from metastases, consistent with a model of clonal outgrowth. Moreover, there were dramatic differences in pathway dysregulation across HNSCC basal primary tumors. Within the basal primary tumors, there was increased immune dysregulation in individuals with a high proportion of fibroblasts present in the tumor microenvironment. These results demonstrate the broad utility of EVA to quantify intertumor and intratumor heterogeneity from scRNA-seq data without reliance on low-dimensional visualization. SIGNIFICANCE: This study presents a robust statistical algorithm for evaluating gene expression heterogeneity within pathways or gene sets in single-cell RNA-seq data.


Assuntos
Algoritmos , Neoplasias/genética , RNA-Seq/métodos , Análise de Sequência de RNA/métodos , Humanos , Análise de Célula Única/métodos
11.
Sci Transl Med ; 11(501)2019 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-31316009

RESUMO

Pancreatic cysts are common and often pose a management dilemma, because some cysts are precancerous, whereas others have little risk of developing into invasive cancers. We used supervised machine learning techniques to develop a comprehensive test, CompCyst, to guide the management of patients with pancreatic cysts. The test is based on selected clinical features, imaging characteristics, and cyst fluid genetic and biochemical markers. Using data from 436 patients with pancreatic cysts, we trained CompCyst to classify patients as those who required surgery, those who should be routinely monitored, and those who did not require further surveillance. We then tested CompCyst in an independent cohort of 426 patients, with histopathology used as the gold standard. We found that clinical management informed by the CompCyst test was more accurate than the management dictated by conventional clinical and imaging criteria alone. Application of the CompCyst test would have spared surgery in more than half of the patients who underwent unnecessary resection of their cysts. CompCyst therefore has the potential to reduce the patient morbidity and economic costs associated with current standard-of-care pancreatic cyst management practices.


Assuntos
Algoritmos , Cisto Pancreático/diagnóstico , Idoso , Feminino , Humanos , Aprendizado de Máquina , Masculino , Pessoa de Meia-Idade , Cisto Pancreático/genética , Cisto Pancreático/patologia , Cisto Pancreático/cirurgia
12.
Elife ; 72018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29557778

RESUMO

Current non-invasive approaches for detection of urothelial cancers are suboptimal. We developed a test to detect urothelial neoplasms using DNA recovered from cells shed into urine. UroSEEK incorporates massive parallel sequencing assays for mutations in 11 genes and copy number changes on 39 chromosome arms. In 570 patients at risk for bladder cancer (BC), UroSEEK was positive in 83% of those who developed BC. Combined with cytology, UroSEEK detected 95% of patients who developed BC. Of 56 patients with upper tract urothelial cancer, 75% tested positive by UroSEEK, including 79% of those with non-invasive tumors. UroSEEK detected genetic abnormalities in 68% of urines obtained from BC patients under surveillance who demonstrated clinical evidence of recurrence. The advantages of UroSEEK over cytology were evident in low-grade BCs; UroSEEK detected 67% of cases whereas cytology detected none. These results establish the foundation for a new non-invasive approach for detection of urothelial cancer.


Assuntos
Aneuploidia , Carcinoma de Células de Transição/diagnóstico , Detecção Precoce de Câncer/métodos , Mutação , Neoplasias da Bexiga Urinária/diagnóstico , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma de Células de Transição/genética , Carcinoma de Células de Transição/urina , Criança , Pré-Escolar , Feminino , Testes Genéticos/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Sensibilidade e Especificidade , Telomerase/genética , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/urina , Adulto Jovem
13.
Sci Transl Med ; 10(433)2018 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-29563323

RESUMO

We report the detection of endometrial and ovarian cancers based on genetic analyses of DNA recovered from the fluids obtained during a routine Papanicolaou (Pap) test. The new test, called PapSEEK, incorporates assays for mutations in 18 genes as well as an assay for aneuploidy. In Pap brush samples from 382 endometrial cancer patients, 81% [95% confidence interval (CI), 77 to 85%] were positive, including 78% of patients with early-stage disease. The sensitivity in 245 ovarian cancer patients was 33% (95% CI, 27 to 39%), including 34% of patients with early-stage disease. In contrast, only 1.4% of 714 women without cancer had positive Pap brush samples (specificity, ~99%). Next, we showed that intrauterine sampling with a Tao brush increased the detection of malignancy over endocervical sampling with a Pap brush: 93% of 123 (95% CI, 87 to 97%) patients with endometrial cancer and 45% of 51 (95% CI, 31 to 60%) patients with ovarian cancer were positive, whereas none of the samples from 125 women without cancer were positive (specificity, 100%). Finally, in 83 ovarian cancer patients in whom plasma was available, circulating tumor DNA was found in 43% of patients (95% CI, 33 to 55%). When plasma and Pap brush samples were both tested, the sensitivity for ovarian cancer increased to 63% (95% CI, 51 to 73%). These results demonstrate the potential of mutation-based diagnostics to detect gynecologic cancers at a stage when they are more likely to be curable.


Assuntos
Neoplasias do Endométrio/diagnóstico , Biópsia Líquida/métodos , Neoplasias Ovarianas/diagnóstico , Teste de Papanicolaou/métodos , Adolescente , Adulto , Idoso , Feminino , Humanos , Pessoa de Meia-Idade , Estudos Retrospectivos , Esfregaço Vaginal/métodos , Adulto Jovem
14.
Science ; 359(6378): 926-930, 2018 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-29348365

RESUMO

Earlier detection is key to reducing cancer deaths. Here, we describe a blood test that can detect eight common cancer types through assessment of the levels of circulating proteins and mutations in cell-free DNA. We applied this test, called CancerSEEK, to 1005 patients with nonmetastatic, clinically detected cancers of the ovary, liver, stomach, pancreas, esophagus, colorectum, lung, or breast. CancerSEEK tests were positive in a median of 70% of the eight cancer types. The sensitivities ranged from 69 to 98% for the detection of five cancer types (ovary, liver, stomach, pancreas, and esophagus) for which there are no screening tests available for average-risk individuals. The specificity of CancerSEEK was greater than 99%: only 7 of 812 healthy controls scored positive. In addition, CancerSEEK localized the cancer to a small number of anatomic sites in a median of 83% of the patients.


Assuntos
DNA Tumoral Circulante/genética , Detecção Precoce de Câncer/métodos , Testes Hematológicos , Proteínas de Neoplasias/sangue , Neoplasias/diagnóstico , Neoplasias/cirurgia , Custos e Análise de Custo , Detecção Precoce de Câncer/economia , Testes Hematológicos/economia , Humanos , Mutação , Neoplasias/sangue , Neoplasias/genética , Reação em Cadeia da Polimerase/métodos
15.
Cancer Res ; 77(19): 5248-5258, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28733453

RESUMO

The incidence of HPV-related oropharyngeal squamous cell carcinoma (OPSCC) has increased more than 200% in the past 20 years. Recent genetic sequencing efforts have elucidated relevant genes in head and neck cancer, but HPV-related tumors have consistently shown few DNA mutations. In this study, we sought to analyze alternative splicing events (ASE) that could alter gene function independent of mutations. To identify ASE unique to HPV-related tumors, RNA sequencing was performed on 46 HPV-positive OPSCC and 25 normal tissue samples. A novel algorithm using outlier statistics on RNA-sequencing junction expression identified 109 splicing events, which were confirmed in a validation set from The Cancer Genome Atlas. Because the most common type of splicing event identified was an alternative start site (39%), MBD-seq genome-wide CpG methylation data were analyzed for methylation alterations at promoter regions. ASE in six genes showed significant negative correlation between promoter methylation and expression of an alternative transcriptional start site, including AKT3 The novel AKT3 transcriptional variant and methylation changes were confirmed using qRT-PCR and qMSP methods. In vitro silencing of the novel AKT3 variant resulted in significant growth inhibition of multiple head and neck cell lines, an effect not observed with wild-type AKT3 knockdown. Analysis of ASE in HPV-related OPSCC identified multiple alterations likely involved in carcinogenesis, including a novel, functionally active transcriptional variant of AKT3 Our data indicate that ASEs represent a significant mechanism of oncogenesis with untapped potential for understanding complex genetic changes that result in the development of cancer. Cancer Res; 77(19); 5248-58. ©2017 AACR.


Assuntos
Processamento Alternativo , Biomarcadores Tumorais/genética , Carcinoma de Células Escamosas/genética , Neoplasias Orofaríngeas/genética , Infecções por Papillomavirus/genética , Proteínas Proto-Oncogênicas c-akt/genética , Adolescente , Adulto , Idoso , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/virologia , Estudos de Casos e Controles , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Neoplasias Orofaríngeas/patologia , Neoplasias Orofaríngeas/virologia , Papillomaviridae/isolamento & purificação , Infecções por Papillomavirus/patologia , Infecções por Papillomavirus/virologia , Prognóstico , Taxa de Sobrevida , Adulto Jovem
16.
Cancer Res ; 77(23): 6538-6550, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28947419

RESUMO

Chromatin alterations mediate mutations and gene expression changes in cancer. Chromatin immunoprecipitation followed by sequencing (ChIP-Seq) has been utilized to study genome-wide chromatin structure in human cancer cell lines, yet numerous technical challenges limit comparable analyses in primary tumors. Here we have developed a new whole-genome analytic pipeline to optimize ChIP-Seq protocols on patient-derived xenografts from human papillomavirus-related (HPV+) head and neck squamous cell carcinoma (HNSCC) samples. We further associated chromatin aberrations with gene expression changes from a larger cohort of the tumor and normal samples with RNA-Seq data. We detect differential histone enrichment associated with tumor-specific gene expression variation, sites of HPV integration in the human genome, and HPV-associated histone enrichment sites upstream of cancer driver genes, which play central roles in cancer-associated pathways. These comprehensive analyses enable unprecedented characterization of the complex network of molecular changes resulting from chromatin alterations that drive HPV-related tumorigenesis. Cancer Res; 77(23); 6538-50. ©2017 AACR.


Assuntos
Cromatina/genética , Regulação Neoplásica da Expressão Gênica/genética , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/virologia , Papillomaviridae/genética , Integração Viral/genética , Sequência de Bases , Linhagem Celular Tumoral , Cromatina/patologia , Imunoprecipitação da Cromatina , Genoma Humano/genética , Humanos , Análise de Sequência de DNA
17.
Cancer Inform ; 13(Suppl 5): 61-7, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25392694

RESUMO

Analysis of gene sets can implicate activity in signaling pathways that is responsible for cancer initiation and progression, but is not discernible from the analysis of individual genes. Multiple methods and software packages have been developed to infer pathway activity from expression measurements for set of genes targeted by that pathway. Broadly, three major methodologies have been proposed: over-representation, enrichment, and differential variability. Both over-representation and enrichment analyses are effective techniques to infer differentially regulated pathways from gene sets with relatively consistent differentially expressed (DE) genes. Specifically, these algorithms aggregate statistics from each gene in the pathway. However, they overlook multivariate patterns related to gene interactions and variations in expression. Therefore, the analysis of differential variability of multigene expression patterns can be essential to pathway inference in cancers. The corresponding methodologies and software packages for such multivariate variability analysis of pathways are reviewed here. We also introduce a new, computationally efficient algorithm, expression variation analysis (EVA), which has been implemented along with a previously proposed algorithm, Differential Rank Conservation (DIRAC), in an open source R package, gene set regulation (GSReg). EVA inferred similar pathways as DIRAC at reduced computational costs. Moreover, EVA also inferred different dysregulated pathways than those identified by enrichment analysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA