Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Opt Express ; 22(4): 4559-74, 2014 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-24663776

RESUMO

A model is developed to evaluate the light collection of a diffuse light source located at the tip of an optical fibre. The model is confirmed experimentally and used to evaluate and compare the light collection efficiency of different fibre-coupled luminescence dosimeter probe designs. The model includes contributions from both meridional and skew rays, and considers the light collection from an optically attenuating scintillator. Hence the model enables the optimisation of different, but useful and new probe materials such as BeO ceramic. Four different dosimeter architectures are considered, including previously investigated probe designs; the butt-coupled and reflective wall, along with two novel designs. The novel designs utilise a combination of the scintillating material and transparent media to increase the light collection. Simulations indicate that the novel probes are more efficient in light collection for applications in which it is necessary to minimise the volume of the scintillating material.

2.
Opt Express ; 19(14): 13464-79, 2011 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-21747502

RESUMO

We report theoretical calculations of the mode fields of high index lead silicate and silicon nano fibers, and show that their strong longitudinal component enables efficient excitation of surface plasmons within a silver nanorod placed at the fiber tip. An excitation efficiency 1600 times higher than that of the standard single mode fibers has been achieved using a 350nm diameter silicon fiber at 1.1µm wavelength, while a factor of 640 times higher efficiency is achieved for a 400nm diameter lead silicate F2 glass fiber. The strong localized field emerging from the end of the rod serves as a nano-scale source with adjustable beam width, and such sources offer a new approach to high-resolution microscopy, particle manipulation and sensing.


Assuntos
Metais/química , Nanotubos/química , Nanotubos/ultraestrutura , Ressonância de Plasmônio de Superfície/métodos , Luz , Espalhamento de Radiação
3.
Med Phys ; 47(2): 393-403, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31778235

RESUMO

PURPOSE: Protons and heavy ions are considered to be ideal particles for use in external beam radiotherapy due to the superior properties of the dose distribution. While a photon (x-ray) beam delivers considerable dose to healthy tissues around the tumor, a proton beam that is delivered with sufficient energies has: a low entrance dose (the dose in front of the tumor); a high-dose region within the tumor, known as the Bragg peak; and, no exit dose beyond the tumor. Proton therapy is the next major step in advancing radiotherapy treatment. The purpose of this project was to adapt an existing radioisotope production cyclotron, a General Electric (GE) PETtrace, to enable radiobiological studies using proton beams. During routine use the PETtrace delivers 16.5 MeV protons to target with beam currents in the range of 10-100 µA resulting in dose rates in the order of kGy/s. To achieve the aim of the project the dose rate had to be reduced to the Gy/min range, without attenuating the proton energy below 5 MeV. This paper covers the design, construction and validation of the beam port. METHODS: Monte Carlo simulations were performed, using GEANT4, SRIM and PACE4 to design the beam port and optimize its components. Once the beam port was fabricated, validation experiments were performed using EBT3 and HD-V2 Gafchromic™ films, and a Keithley 6485 picoampere meter. RESULTS AND CONCLUSION: The external beam port was successfully modeled, designed and fabricated. By using a 0.25 mm thick gold foil and a brass pin-hole collimator the beam was spread from a narrow full beam diameter of 10 mm to a wide beam with a 5% flatness area in the center of the beam that had a diameter of ~20 mm. In using this system the dose rate was reduced from kGy/s to ~30 Gy/min.


Assuntos
Neoplasias/radioterapia , Terapia com Prótons/instrumentação , Terapia com Prótons/métodos , Simulação por Computador , Ciclotrons , Relação Dose-Resposta à Radiação , Eletricidade , Desenho de Equipamento , Humanos , Método de Monte Carlo , Prótons , Radiobiologia , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA