RESUMO
Vibrio cholerae causes life-threatening infections in low-income countries due to the rise of antibacterial resistance. Innovative pharmacological targets have been investigated and carbonic anhydrases (CAs, EC: 4.2.1.1) encoded by V. cholerae (VchCAs) emerged as a valuable option. Recently, we developed a large library of para- and meta-benzenesulfonamides characterised by moieties with a different flexibility degree as CAs inhibitors. Stopped flow-based enzymatic assays showed strong inhibition of VchαCA for this library, while lower affinity was detected against the other isoforms. In particular, cyclic urea 9c emerged for a nanomolar inhibition of VchαCA (KI = 4.7 nM) and high selectivity with respect to human isoenzymes (SI≥ 90). Computational studies revealed the influence of moiety flexibility on inhibitory activity and isoform selectivity and allowed accurate SARs. However, although VchCAs are involved in the bacterium virulence and not in its survival, we evaluated the antibacterial activity of such compounds, resulting in no direct activity.
Assuntos
Anidrases Carbônicas , Vibrio cholerae , Humanos , Relação Estrutura-Atividade , Estrutura Molecular , Inibidores da Anidrase Carbônica/farmacologia , Inibidores da Anidrase Carbônica/química , Relação Dose-Resposta a Droga , Anidrases Carbônicas/metabolismo , BenzenossulfonamidasRESUMO
Effective therapy against the influenza virus is still an unmet goal. Drugs with antiviral effects exist, but the appearance of resistant viruses pushes towards the discovery of drugs with different mechanisms of action. New anti-influenza molecules should target a good candidate, as a new anti-influenza molecule could be an inhibitor of the influenza A virus hemagglutinin (HA), which plays a key role during the early phases of infection. In previous work, we identified two tetrapeptide sequences, SLDC (1) and SKHS (2), derived from bovine lactoferrin (bLf) C-lobe fragment 418-429, which were able to bind HA and inhibit cell infection at picomolar concentration. Considering the above, the aim of this study was to synthesize a new library of peptidomimetics active against the influenza virus. In order to test their ability to bind HA, we carried out a preliminary screening using biophysical assays such as surface plasmon resonance (SPR) and orthogonal immobilization-free microscale thermophoresis (MST). Biological and computational studies on the most interesting compounds were carried out. The methods applied allowed for the identification of a N-methyl peptide, S(N-Me)LDC, which, through high affinity binding of influenza virus hemagglutinin, was able to inhibit virus-induced hemagglutination and cell infection at picomolar concentration. This small sequence, with high activity, represents a good starting point for the design of new peptidomimetics and small molecules.
Assuntos
Vírus da Influenza A , Peptidomiméticos , Peptidomiméticos/farmacologia , Hemaglutininas , Antivirais/farmacologia , BioensaioRESUMO
There is an urgent need to identify efficient antiviral compounds to combat existing and emerging RNA virus infections, particularly those related to seasonal and pandemic influenza outbreaks. While inhibitors of the influenza viral integral membrane proton channel protein (M2), neuraminidase (NA), and cap-dependent endonuclease are available, circulating influenza viruses acquire resistance over time. Thus, the need for the development of additional anti-influenza drugs with novel mechanisms of action exists. In the present study, a cell-based screening assay and a small molecule library were used to screen for activities that antagonized influenza A non-structural protein 1 (NS1), a highly conserved, multifunctional accessory protein that inhibits the type I interferon response against influenza. Two potential anti-influenza agents, compounds 157 and 164, were identified with anti-NS1 activity, resulting in the reduction of A/PR/8/34(H1N1) influenza A virus replication and the restoration of IFN-ß expression in human lung epithelial A549 cells. A 3D pharmacophore modeling study of the active compounds provided a glimpse of the structural motifs that may contribute to anti-influenza virus activity. This screening approach is amenable to a broader analysis of small molecule compounds to inhibit other viral targets.
Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Influenza Humana , Interferon Tipo I , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Interferon Tipo I/metabolismo , Proteínas não Estruturais Virais/metabolismo , Influenza Humana/tratamento farmacológico , Vírus da Influenza A/genética , Antivirais/farmacologia , Antivirais/metabolismo , Replicação ViralRESUMO
Influenza viruses represent a leading cause of high morbidity and mortality worldwide. Approaches for fighting flu are seasonal vaccines and some antiviral drugs. The development of the seasonal flu vaccine requires a great deal of effort, as careful studies are needed to select the strains to be included in each year's vaccine. Antiviral drugs available against Influenza virus infections have certain limitations due to the increased resistance rate and negative side effects. The highly mutative nature of these viruses leads to the emergence of new antigenic variants, against which the urgent development of new approaches for antiviral therapy is needed. Among these approaches, one of the emerging new fields of "peptide-based therapies" against Influenza viruses is being explored and looks promising. This review describes the recent findings on the antiviral activity, mechanism of action and therapeutic capability of antiviral peptides that bind HA, NA, PB1, and M2 as a means of countering Influenza virus infection.
Assuntos
Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Orthomyxoviridae , Antivirais/farmacologia , Antivirais/uso terapêutico , Humanos , Influenza Humana/tratamento farmacológico , Influenza Humana/prevenção & controle , Neuraminidase , Peptídeos/farmacologia , Peptídeos/uso terapêuticoRESUMO
The involvement of human carbonic anhydrase (hCA) IX/XII in the pathogenesis and progression of many types of cancer is well acknowledged, and more recently human monoamine oxidases (hMAOs) A and B have been found important contributors to tumor development and aggressiveness. With a view of an enzymatic dual-blockade approach, in this investigation, new coumarin-based amino acyl and (pseudo)-dipeptidyl derivatives were synthesized and firstly evaluated in vitro for inhibitory activity and selectivity against membrane-bound and cytosolic hCAs (hCA IX/XII over hCA I/II), as well as the hMAOs, to estimate their potential as anticancer agents. De novo design of peptide-coumarin conjugates was subsequently carried out and involved the combination of the widely explored coumarin nucleus with the unique biophysical and structural properties of native or modified peptides. All compounds displayed nanomolar inhibitory activities towards membrane-anchored hCAs, whilst they were unable to block the ubiquitous CA I and II isoforms. Structural features pertinent to potent and selective CA inhibitory activity are discussed, and modeling studies were found to support the biological data. Lower potency inhibition of the hMAOs was observed, with most compounds showing preferential inhibition of hMAO-A. The binding of the most potent ligands (6 and 16) to the hydrophobic active site of hMAO-A was investigated in an attempt to explain selectivity on the molecular level. Calculated Ligand Efficiency values indicate that compound 6 has the potential to serve as a lead compound for developing innovative anticancer agents based on the dual inhibition strategy. This information may help design new coumarin-based peptide molecules with diverse bioactivities.
Assuntos
Inibidores da Anidrase Carbônica , Anidrases Carbônicas , Humanos , Inibidores da Anidrase Carbônica/farmacologia , Inibidores da Anidrase Carbônica/química , Monoaminoxidase/metabolismo , Relação Estrutura-Atividade , Anidrases Carbônicas/química , Cumarínicos/farmacologia , Cumarínicos/química , Anidrase Carbônica II/metabolismoRESUMO
Neurodegenerative diseases (NDs) are described as multifactorial and progressive syndromes with compromised cognitive and behavioral functions. The multi-target-directed ligand (MTDL) strategy is a promising paradigm in drug discovery, potentially leading to new opportunities to manage such complex diseases. Here, we studied the dual ability of a set of resveratrol (RSV) analogs to inhibit two important targets involved in neurodegeneration. The stilbenols 1−9 were tested as inhibitors of the human monoamine oxidases (MAOs) and carbonic anhydrases (CAs). The studied compounds displayed moderate to excellent in vitro enzyme inhibitory activity against both enzymes at micromolar/nanomolar concentrations. Among them, the best compound 4 displayed potent and selective inhibition against the MAO-B isoform (IC50 MAO-A 0.43 µM vs. IC50 MAO-B 0.01 µM) with respect to the parent compound resveratrol (IC50 MAO-A 13.5 µM vs. IC50 MAO-B > 100 µM). It also demonstrated a selective inhibition activity against hCA VII (KI 0.7 µM vs. KI 4.3 µM for RSV). To evaluate the plausible binding mode of 1−9 within the two enzymes, molecular docking and dynamics studies were performed, revealing specific and significant interactions in the active sites of both targets. The new compounds are of pharmacological interest in view of their considerably reduced toxicity previously observed, their physicochemical and pharmacokinetic profiles, and their dual inhibitory ability. Compound 4 is noteworthy as a promising lead in the development of MAO and CA inhibitors with therapeutic potential in neuroprotection.
Assuntos
Anidrases Carbônicas , Doenças Neurodegenerativas , Humanos , Inibidores da Monoaminoxidase/química , Resveratrol/farmacologia , Doenças Neurodegenerativas/tratamento farmacológico , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Monoaminoxidase/metabolismo , Anidrases Carbônicas/metabolismoRESUMO
A multilayered computational workflow was designed to identify a druggable binding site on the surface of the E200K pathogenic mutant of the human prion protein, and to investigate the effect of the binding of small molecules in the inhibition of the early aggregation of this protein. At this purpose, we developed an efficient computational tool to scan the molecular interaction properties of a whole MD trajectory, thus leading to the characterization of plausible binding regions on the surface of PrP-E200K. These structural data were then employed to drive structure-based virtual screening and fragment-based approaches to the seeking of small molecular binders of the PrP-E200K. Six promising compounds were identified, and their binding stabilities were assessed by MD simulations. Therefore, analyses of the molecular electrostatic potential similarity between the bound complexes and unbound protein evidenced their potential activity as charged-based inhibitors of the PrP-E200K early aggregation.
Assuntos
Proteínas Mutantes/química , Príons/química , Sítios de Ligação , Humanos , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Simulação de Dinâmica Molecular , Príons/antagonistas & inibidores , Príons/genética , Ligação Proteica , Conformação Proteica , Eletricidade Estática , Relação Estrutura-AtividadeRESUMO
The inhibition of cyclin dependent kinases 4 and 6 plays a role in aromatase inhibitor resistant metastatic breast cancer. Three dual CDK4/6 inhibitors have been approved for the breast cancer treatment that, in combination with the endocrine therapy, dramatically improved the survival outcomes both in first and later line settings. The developments of the last five years in the search for new selective CDK4/6 inhibitors with increased selectivity, treatment efficacy, and reduced adverse effects are reviewed, considering the small-molecule inhibitors and proteolysis-targeting chimeras (PROTACs) approaches, mainly pointing at structure-activity relationships, selectivity against different kinases and antiproliferative activity.
Assuntos
Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Inibidores da Aromatase/farmacologia , Neoplasias da Mama/tratamento farmacológico , Feminino , Humanos , Terapia de Alvo Molecular/tendênciasRESUMO
The programmed cell death protein 1 (PD-1) and its ligand, PD-L1, constitute an important co-inhibitory immune checkpoint leading to downregulation of immune system. Tumor cells developed a strategy to trigger PD-1/PD-L1 pathway reducing the T cell anticancer activity. Anti-PD-L1 small drugs, generally with improved pharmacokinetic and technological profiles than monoclonal antibodies, became an attractive research topic. Nevertheless, still few works have been published on the chemical features of possible binding sites. In this work, we applied a novel computational protocol based on the combination of the ab initio Fragment Molecular Orbital (FMO) method and a newly developed GRID-DRY approach in order to characterize the PD-L1 binding sites, starting from PD-1/PD-L1 and PD-L1/BMS-ligands (Bristol-Mayers Squibb ligands) complexes. The FMO method allows the calculation of the pair-residues as well as the ligand-residues interactions with ab initio accuracy, whereas the GRID-DRY approach is an effective tool to investigate hydrophobic interactions, not easily detectable by ab initio methods. The present GRID-DRY protocol is able to determine the energy contributions of each ligand atoms to each hydrophobic interaction, both qualitatively and quantitatively. We were also able to identify the three specific hot regions involved in PD-1/PD-L1 protein-protein interaction and in PD-L1/BMS-ligand interactions, in agreement with preceding theoretical/experimental results, and to suggest a specific pharmacophore for PD-L1 inhibitors.
Assuntos
Antígeno B7-H1/química , Antígeno B7-H1/metabolismo , Inibidores de Checkpoint Imunológico/química , Modelos Moleculares , Anticorpos Monoclonais/química , Anticorpos Monoclonais/metabolismo , Sítios de Ligação , Humanos , Interações Hidrofóbicas e Hidrofílicas , Inibidores de Checkpoint Imunológico/metabolismo , Ligantes , Receptor de Morte Celular Programada 1/química , Receptor de Morte Celular Programada 1/metabolismoRESUMO
Matrix metalloproteinases (MMPs) are a large family of zinc-dependent endoproteases known to exert multiple regulatory roles in tumor progression and invasiveness. This encouraged over the years the approach of MMP, and particularly MMP-2, targeting for anticancer treatment. Early generations of MMP inhibitors, based on aspecific zinc binding groups (ZBGs) assembled on (pseudo)peptide scaffolds, have been discontinued due to the clinical emergence of toxicity and further drawbacks, giving the way to inhibitors with alternative zinc-chelator moieties or not binding the catalytic zinc ion. In the present paper, we continue the search for new non-zinc binding MMP-2 inhibitors: exploiting previously identified compounds, a virtual screening (VS) campaign was carried out and led to the identification of a new class of ligands. The structure-activity relationship (SAR) of the benzimidazole scaffold was explored by synthesis of several analogues whose inhibition activity was tested with enzyme inhibition assays. By performing the molecular simplification approach, we disclosed different sets of single-digit micromolar inhibitors of MMP-2, with up to a ten-fold increase in inhibitory activity and ameliorated selectivity towards off-target MMP-8, compared to selected lead compound. Molecular dynamics calculations conducted on complexes of MMP-2 with docked privileged structures confirmed that analyzed inhibitors avoid targeting the zinc ion and dip inside the S1' pocket. Present results provide a further enrichment of our insights for the design of novel MMP-2 selective inhibitors.
Assuntos
Benzimidazóis/farmacologia , Metaloproteinase 2 da Matriz/metabolismo , Inibidores de Metaloproteinases de Matriz/farmacologia , Benzimidazóis/química , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Humanos , Inibidores de Metaloproteinases de Matriz/química , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-AtividadeRESUMO
A series of nanomolar phosphonate matrix metalloproteinase (MPP) inhibitors was tested for inhibitory activity against a panel of selected human carbonic anhydrase (CA, EC 4.2.1.1) isozymes, covering the cancer-associated CA IX and XII. None of the reported sulfonyl and sulfonylamino-derivatives sensitively affected the catalytic activity of the cytosolic isoforms CA I and II, which are considered off-target isoforms in view of their physiological role. The most active inhibitors were in the series of chiral N-(sulfonyl)phosphovaline derivatives, which showed good to excellent inhibitory activity over target CAs, with compound 15 presenting the best isoform-selectivity toward CA IX. We suggest here that the phosphonates have the potential as dual inhibitors of MMPs and CAs, both involved in tumor formation, invasion and metastasis.
Assuntos
Anidrases Carbônicas/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Metaloproteinases da Matriz/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Ácidos Fosforosos/síntese química , Ácidos Fosforosos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Inibidores da Anidrase Carbônica/síntese química , Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/classificação , Ativação Enzimática/efeitos dos fármacos , Humanos , Ácidos Fosforosos/química , Isoformas de ProteínasRESUMO
The p53-MDM2 interaction is a well-known protein-protein contact, and its disruption is a key event for p53 activation and induction of its oncosuppressor response. The design of small molecules that can block the p53-MDM2 interaction and reactivate the p53 function is a promising strategy for cancer therapy. To date, several compounds have been identified as p53-MDM2 inhibitors, and X-ray structures of MDM2 complexed with several ligands are available in the Brookhaven Protein Data Bank. These data have been exploited to compile a hierarchical virtual screening protocol. The first steps were aimed at selecting a focused library, which was submitted in parallel to docking and pharmacophore model alignment. Selected compounds were subjected to inhibition assays of both cellular vitality (MTT) and p53-MDM2 interaction (ELISA and co-immunoprecipitation), disclosing four nanomolar inhibitors.
Assuntos
Antineoplásicos/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Antineoplásicos/química , Antineoplásicos/metabolismo , Linhagem Celular Tumoral , Humanos , Ligantes , Simulação de Acoplamento Molecular , Ligação Proteica/efeitos dos fármacos , Conformação Proteica em alfa-Hélice , Proteínas Proto-Oncogênicas c-mdm2/química , Relação Estrutura-Atividade , Proteína Supressora de Tumor p53/química , Interface Usuário-ComputadorRESUMO
Candida albicans represents the most prevalent microbial population in mucosal and systemic infections, usually confined to severely immunocompromised people. Considering the increase of resistant strains and the demand for new antifungal drugs endowed with innovative mechanism of action, we performed a ligand-based virtual screening in order to identify new anti-Candida compounds. Starting from a large library of natural/semisynthetic products and several published synthesized compounds, three coumarin derivatives were discovered in silico as new hit compounds and submitted to the in vitro assay in order to confirm their predicted biological activity.
Assuntos
Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Antifúngicos/química , Ligantes , Testes de Sensibilidade MicrobianaRESUMO
New catechol-containing chemical entities have been investigated as matrix metalloproteinase inhibitors as well as antioxidant molecules. The combination of the two properties could represent a useful feature due to the potential application in all the pathological processes characterized by increased proteolytic activity and radical oxygen species (ROS) production, such as inflammation and photoaging. A series of catechol-based molecules were synthesized and tested for both proteolytic and oxidative inhibitory activity, and the detailed binding mode was assessed by crystal structure determination of the complex between a catechol derivative and the matrix metalloproteinase-8. Surprisingly, X-ray structure reveals that the catechol oxygens do not coordinates the zinc atom.
Assuntos
Antioxidantes/farmacologia , Catecóis/farmacologia , Metaloproteinase 8 da Matriz/metabolismo , Inibidores de Metaloproteinases de Matriz/farmacologia , Antioxidantes/síntese química , Antioxidantes/química , Catecóis/síntese química , Catecóis/química , Relação Dose-Resposta a Droga , Humanos , Metaloproteinase 8 da Matriz/isolamento & purificação , Inibidores de Metaloproteinases de Matriz/síntese química , Inibidores de Metaloproteinases de Matriz/química , Modelos Moleculares , Estrutura Molecular , Relação Quantitativa Estrutura-Atividade , Espécies Reativas de Oxigênio/metabolismoRESUMO
OBJECTIVES: Bisphosphonates (BPs) are drugs clinically used in resorptive diseases. It was already proved that some clinically relevant BPs can inhibit a class of enzymes called matrix metalloproteinases (MMPs), required during tissue remodelling. Combining the arylsulfonamide function with the bisphosphonic group, several compounds were synthesized to obtain selective inhibitors of MMPs. The aim of the present study was to compare the effect of zoledronic acid (ZA), the most potent bisphosphonate available as therapy, with new sulfonamide containing BPs in an in vitro model of human gingival fibroblasts (HGFs). MATERIALS AND METHODS: Western blot was used to measure procollagen I, ß1 integrin MMP-8 and MMP-9, phase contrast and MTT for cell viability; L-lactate-dehydrogenase (LDH) measurement was performed for toxicity evaluation and ELISA for prostaglandin E2 (PGE2) secretion assessment. RESULTS: When compared with ZA, the treatment with the newly synthesized compounds shows increasing viability, procollagen I expression and decreased expression of ß1 integrin in HGFs. Higher levels of released LDH, PGE2 and MMP-9 expression are recorded in ZA-treated HGFs. Increased levels of MMP-8 are recorded in newly synthesized compounds-treated samples. CONCLUSIONS: These findings allowed to conclude that new tested BPs did not affect HGFs viability and adhesion, did not induce cellular toxicity, were not responsible for inflammatory event induction and could preserve the physiological matrix turnover. CLINICAL RELEVANCE: It could be hypothesized that the new molecules were better tolerated by soft tissues, resulting in lesser side effects.
Assuntos
Conservadores da Densidade Óssea/farmacologia , Difosfonatos/farmacologia , Fibroblastos/efeitos dos fármacos , Gengiva/citologia , Imidazóis/farmacologia , Adulto , Biomarcadores/análise , Western Blotting , Conservadores da Densidade Óssea/síntese química , Adesão Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Difosfonatos/síntese química , Ensaio de Imunoadsorção Enzimática , Humanos , Imidazóis/síntese química , Técnicas In Vitro , Inflamação , Dente Serotino , Ácido ZoledrônicoRESUMO
Matrix metalloproteinases (MMPs) are an important family of zinc-containing enzymes with a central role in many physiological and pathological processes. Although several MMP inhibitors have been synthesized over the years, none reached the market because of off-target effects, due to the presence of a zinc binding group in the inhibitor structure. To overcome this problem non-zinc-binding inhibitors (NZIs) have been recently designed. In a previous article, a virtual screening campaign identified some hydroxynaphtyridine and hydroxyquinoline as MMP-2 non-zinc-binding inhibitors. In the present work, simplified analogues of previously-identified hits have been synthesized and tested in enzyme inhibition assays. Docking and molecular dynamics studies were carried out to rationalize the activity data.
Assuntos
Desenho de Fármacos , Hidroxiquinolinas/química , Metaloproteinase 2 da Matriz/química , Inibidores de Metaloproteinases de Matriz/química , Naftiridinas/química , Ensaios Enzimáticos , Humanos , Hidroxiquinolinas/síntese química , Cinética , Inibidores de Metaloproteinases de Matriz/síntese química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Naftiridinas/síntese química , Ligação Proteica , Domínios Proteicos , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Relação Estrutura-Atividade , Zinco/químicaRESUMO
Caspase-3 displays a pivotal role as an executioner of apoptosis, hydrolyzing several proteins including the nuclear enzyme poly(ADP-ribose)polymerase (PARP). Ac-Asp-Glu-Val-Asp-H (K i° = 2.3 × 10(-10) M at pH 7.5 and 25.0 °C), designed on the basis of the cleavage site of PARP, has been reported as a highly specific human caspase-3 inhibitor. Here, di- and tri-peptidyl aldehydes 11-13 and 27-29 have been synthesized to overcome the susceptibility to proteolysis, the intrinsic instability, and the scarce membrane permeability of the current inhibitors. Compounds 11-13, 27-29 inhibit in vitro human caspase-3 competitively, values of K i° ranging between 6.5 (±0.82) × 10(-9) M and 1.1 (±0.04) × 10(-7) M (at pH 7.4 and 25.0 °C). Moreover, the most effective caspase-3 inhibitor 11 impairs apoptosis in human DLD-1 colon adenocarcinoma cells. Furthermore, the binding mode of 11-13 and 27-29 to human caspase-3 has been investigated in silico. The comparative analysis of human caspase-3 inhibitors indicates that (1) aldehyde 11 is the minimal highly effective inhibitor, (2) the tLeu-Asp sequence is pivotal for satisfactory enzyme inhibition, and (3) the occurrence of the tLeu residue at the inhibitor P2 position is fundamental for enzyme/inhibitor recognition. Moreover, calculations suggest that the tLeu residue reduces the conformational flexibility of the inhibitor that binds to the enzyme with a lower energetic penalty.
Assuntos
Caspase 3/química , Inibidores de Caspase/química , Peptídeos/química , Sequência de Aminoácidos , Apoptose/efeitos dos fármacos , Inibidores de Caspase/síntese química , Inibidores de Caspase/farmacologia , Linhagem Celular Tumoral , Simulação por Computador , Humanos , Cinética , Simulação de Acoplamento Molecular , Dados de Sequência Molecular , Peptídeos/síntese química , Peptídeos/farmacologiaRESUMO
In recent years, continuous progress has been made in the development of new anticancer drugs, and several compounds (small molecules, engineered antibodies, immunomodulators, etc [...].
RESUMO
Immunotherapy has marked a revolution in cancer therapy. The most extensively studied target in this field is represented by the protein-protein interaction between PD-1 and its ligand, PD-L1. The promising results obtained with the clinical use of monoclonal antibodies (mAbs) directed against both PD-1 and PD-L1 have prompted the search for small-molecule binders capable of disrupting the protein-protein contact and overcoming the limitations presented by mAbs. The disclosure of the first X-ray complexes of PD-L1 with BMS ligands showed the protein in dimeric form, with the ligand in a symmetrical hydrophobic tunnel. These findings paved the way for the discovery of new ligands. To this end, and to understand the binding mechanism of small molecules to PD-L1 along with the dimerization process, many structure-based computational studies have been applied. In the present review, we examined the most relevant articles presenting computational analyses aimed at elucidating the binding mechanism of PD-L1 with PD-1 and small molecule ligands. Additionally, virtual screening studies that identified validated PD-L1 ligands were included. The relevance of the reported studies highlights the increasingly prominent role that these techniques can play in chemical biology and drug discovery.
RESUMO
Helicobacter pylori (Hp) infection affects nearly half of the global population. Current therapeutic options include the administration of a combination of antibiotics and proton pump inhibitors, although antimicrobial resistance rise remains a big concern. Phenolic monoterpenes, e.g., eugenol, vanillin, carvacrol, and thymol, have always attracted researchers for their multifaced biological activities and the possibility to be easily derivatized. Thereby, herein we present the functionalization of such compounds through the conventional aryl diazotization reaction, generating a series of mono- and bis-azo derivatives (1-28). Also, to continue previous studies, we investigated the role of the free phenolic moiety of thymol with eight compounds (29-36). The compounds were tested against four Hp strains including three clinical isolates, finding some potent and selective inhibitors of bacterial growth. Thus, the representative compounds underwent in vitro cytotoxicity evaluation on two normal cell lines and putative target investigation by performing a structure-based approach based on docking calculations on some of the most studied pharmacological targets for Hp, e.g., urease, ß-hydroxyacyl-acyl carrier protein dehydratase, glucose 6-phosphate dehydrogenase, and inosine 5'-monophosphate dehydrogenase.