RESUMO
3D bioprinting is an advanced technology combining cells and bioactive molecules within a single bioscaffold; however, this scaffold cannot change, modify or grow in response to a dynamic implemented environment. Lately, a new era of smart polymers and hydrogels has emerged, which can add another dimension, e.g., time to 3D bioprinting, to address some of the current approaches' limitations. This concept is indicated as 4D bioprinting. This approach may assist in fabricating tissue-like structures with a configuration and function that mimic the natural tissue. These scaffolds can change and reform as the tissue are transformed with the potential of specific drug or biomolecules released for various biomedical applications, such as biosensing, wound healing, soft robotics, drug delivery, and tissue engineering, though 4D bioprinting is still in its early stages and more works are required to advance it. In this review article, the critical challenge in the field of 4D bioprinting and transformations from 3D bioprinting to 4D phases is reviewed. Also, the mechanistic aspects from the chemistry and material science point of view are discussed too.
RESUMO
Gradually, loss of skin elasticity and elastic properties occurs after 30 years of age and will be associated with several changes, including creating wrinkles, skin laxity (sagging skin), and skin blemishes. In general, people all over the world are looking for ways to keep their facial skin young over time. There are several strategies to skin rejuvenate, including invasive and non-invasive methods. However, invasive methods have less popularity than non-invasive methods due to their need for specialist physicians (medical expertise), localized neuropathic pains for patients, the prevalence and incidence of skin infections, and high-cost clinical services. In the meantime, skin hydration is one of the simplest non-invasive methods for skin rejuvenation, and HA, with anti-aging and skin collagen-stimulating properties, has been introduced as a natural skin moisturizing agent. Therefore, since this composition maintains facial skin moisture and radiance, and improves its elasticity, it has always been considered by experts and specialist physicians. On the other hand, due to its lipophilic properties, hydrophilic macromolecules containing HA cannot pass through the stratum corneum. However, they have temporary and superficial softening effects on the skin. Hence, some nanocarriers have been suggested to overcome this problem and develop the properties and positive influences of HA on skin rejuvenation. Therefore, the present study aimed to introduce some new non-invasive approaches in facial skin rejuvenation, including applying liposomes, niosomes, ethosomes, and ionic liquids, to transport HA into the inner and deeper layers of the skin, including Dermis. In this review article, we examine non-invasive methods using nanoparticles to deliver HA to the epidermis and dermis of the skin for skin rejuvenation.
Assuntos
Ácido Hialurônico , Envelhecimento da Pele , Humanos , Rejuvenescimento , Pele , FaceRESUMO
Today, researchers have focused on the application of environmentally-benign and sustainable micro- and nanosystems for drug delivery and cancer therapy. Compared to conventional chemotherapeutics, advanced micro- and nanosystems designed by applying abundant, natural, and renewable feedstocks have shown biodegradability, biocompatibility, and low toxicity advantages. However, important aspects of toxicological assessments, clinical translational studies, and suitable functionalization/modification still need to be addressed. Herein, the benefits and challenges of green nanomedicine in cancer nanotherapy and targeted drug delivery are cogitated using nanomaterials designed by exploiting natural and renewable resources. The application of nanomaterials accessed from renewable natural resources, comprising metallic nanomaterials, carbon-based nanomaterials, metal-organic frameworks, natural-derived nanomaterials, etc. for targeted anticancer drug delivery and cancer nanotherapy are deliberated, with emphasis on important limitations/challenges and future perspectives.
Assuntos
Nanoestruturas , Neoplasias , Humanos , Nanomedicina , Nanoestruturas/uso terapêutico , Sistemas de Liberação de Medicamentos , Neoplasias/tratamento farmacológico , Recursos NaturaisRESUMO
The overall success in launching discovered drugs is tightly restricted to the high rate of late-stage failures, which ultimately inhibits the distribution of medicines in markets. As a result, it is imperative that methods reliably predict the effectiveness and, more critically, the toxicity of medicine early in the drug development process before clinical trials be continuously innovated. We must stay up to date with the fast appearance of new infections and diseases by rapidly developing the requisite vaccinations and medicines. Modern in vitro models of disease may be used as an alternative to traditional disease models, and advanced technology can be used for the creation of pharmaceuticals as well as cells, drugs, and gene delivery systems to expedite the drug discovery procedure. Furthermore, in vitro models that mimic the spatial and chemical characteristics of native tissues, such as a 3D bioprinting system or other technologies, have proven to be more effective for drug screening than traditional 2D models. Viral and non-viral gene delivery vectors are a hopeful tool for combinatorial gene therapy, suggesting a quick way of simultaneously deliver multiple genes. A 3D bioprinting system embraces an excellent potential for gene delivery into the different cells or tissues for different diseases, in tissue engineering and regeneration medicine, in which the precise nucleic acid is located in the 3D printed tissues and scaffolds. Non-viral nanocarriers, in combination with 3D printed scaffolds, are applied to their delivery of genes and controlled release properties. There remains, however, a big obstacle in reaching the full potential of 3D models because of a lack of in vitro manufacturing of live tissues. Bioprinting advancements have made it possible to create biomimetic constructions that may be used in various drug discovery research applications. 3D bioprinting also benefits vaccinations, medicines, and relevant delivery methods because of its flexibility and adaptability. This review discusses the potential of 3D bioprinting technologies for pharmaceutical studies.
Assuntos
Terapia GenéticaRESUMO
The therapeutic effects of carotenoids as dietary supplements to control or even treat some specific diseases including diabetic retinopathy, cardiovascular diseases, bacterial infections, as well as breast, prostate, and skin cancer are discussed in this review and also thoughts on future research for their widespread use are emphasized. From the stability standpoint, carotenoids have low bioavailability and bioaccessibility owing to their poor water solubility, deterioration in the presence of environmental stresses such as oxygen, light, and high heat as well as rapid degradation during digestion. Nanoencapsulation technologies as wall or encapsulation materials have been increasingly used for improving food product functionality. Nanoencapsulation is a versatile process employed for the protection, entrapment, and the delivery of food bioactive products including carotenoids from diverse environmental conditions for extended shelf lives and for providing controlled release. Therefore, we present here, recent (mostly during the last five years) nanoencapsulation methods of carotenoids with various nanocarriers. To us, this review can be considered as the first highlighting not only the potential therapeutic effects of carotenoids on various diseases but also their most effective nanodelivery systems.HighlightsBioactive compounds are of deep interest to improve food properties.Carotenoids (such as ß-carotene and xanthophylls) play indispensable roles in maintaining human health and well-being.A substantial research effort has been carried out on developing beneficial nanodelivery systems for various carotenoids.Nanoencapsulation of carotenoids can enhance their functional properties.Stable nanoencapsulated carotenoids could be utilized in food products.
Assuntos
Carotenoides , Sistemas de Liberação de Fármacos por Nanopartículas , Disponibilidade Biológica , Suplementos Nutricionais , Excipientes , HumanosRESUMO
The application of quantum dots (QDs) for detecting and treating various types of coronaviruses is very promising, as their low toxicity and high surface performance make them superior among other nanomaterials; in conjugation with fluorescent probes they are promising semiconductor nanomaterials for the detection of various cellular processes and viral infections. In view of the successful results for inhibiting SARS-CoV-2, functional QDs could serve eminent role in the growth of safe nanotherapy for the cure of viral infections in the near future; their large surface areas help bind numerous molecules post-synthetically. Functionalized QDs with high functionality, targeted selectivity, stability and less cytotoxicity can be employed for highly sensitive co-delivery and imaging/diagnosis. Besides, due to the importance of safety and toxicity issues, QDs prepared from plant sources (e.g. curcumin) are much more attractive, as they provide good biocompatibility and low toxicity. In this review, the recent developments pertaining to the diagnostic and inhibitory potentials of QDs against SARS-CoV-2 are deliberated including important challenges and future outlooks. © 2022 Society of Chemical Industry (SCI).
RESUMO
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused the COVID-19 pandemic that has been spreading around the world since December 2019. More than 10 million affected cases and more than half a million deaths have been reported so far, while no vaccine is yet available as a treatment. Considering the global healthcare urgency, several techniques, including whole genome sequencing and computed tomography imaging have been employed for diagnosing infected people. Considerable efforts are also directed at detecting and preventing different modes of community transmission. Among them is the rapid detection of virus presence on different surfaces with which people may come in contact. Detection based on non-contact optical techniques is very helpful in managing the spread of the virus, and to aid in the disinfection of surfaces. Nanomaterial-based methods are proven suitable for rapid detection. Given the immense need for science led innovative solutions, this manuscript critically reviews recent literature to specifically illustrate nano-engineered effective and rapid solutions. In addition, all the different techniques are critically analyzed, compared, and contrasted to identify the most promising methods. Moreover, promising research ideas for high accuracy of detection in trace concentrations, via color change and light-sensitive nanostructures, to assist fingerprint techniques (to identify the virus at the contact surface of the gas and solid phase) are also presented.
Assuntos
Betacoronavirus/genética , Infecções por Coronavirus/diagnóstico , Estruturas Metalorgânicas/química , Nanotecnologia/métodos , Pneumonia Viral/diagnóstico , Sistemas Automatizados de Assistência Junto ao Leito , COVID-19 , Genoma Viral/genética , Humanos , Nanopartículas Metálicas/química , Pandemias , RNA Viral/genética , SARS-CoV-2 , Sequenciamento Completo do GenomaRESUMO
Colloidal inorganic nanoparticles have wide applications in the detection of analytes and in biological assays. A large number of these assays rely on the ability of gold nanoparticles (AuNPs, in the 20 nm diameter size range) to undergo a color change from red to blue upon aggregation. AuNP assays can be based on cross-linking, non-cross linking or unmodified charge-based aggregation. Nucleic acid-based probes, monoclonal antibodies, and molecular-affinity agents can be attached by covalent or non-covalent means. Surface plasmon resonance and SERS techniques can be utilized. Silver NPs also have attractive optical properties (higher extinction coefficient). Combinations of AuNPs and AgNPs in nanocomposites can have additional advantages. Magnetic NPs and ZnO, TiO2 and ZnS as well as insulator NPs including SiO2 can be employed in colorimetric assays, and some can act as peroxidase mimics in catalytic applications. This review covers the synthesis and stabilization of inorganic NPs and their diverse applications in colorimetric and optical assays for analytes related to environmental contamination (metal ions and pesticides), and for early diagnosis and monitoring of diseases, using medically important biomarkers.
Assuntos
Colorimetria , Nanopartículas Metálicas , Ouro , Nanocompostos , Dióxido de Silício , PrataRESUMO
In the last few years, gold nanoparticle biosensors have been developed for rapid, precise, easy and inexpensive with high specificity and sensitivity detection of human, plant and animal pathogens. Klebsiella pneumoniae serotype K2 is one of the common gram-negative pathogens with high prevalence. Therefore, it is essential to provide the effective and exclusive method to detect the bacteria. Klebsiella pneumoniae serotype K2 strain ATCC9997 genomic DNA was applied to establish the detection protocol either with thiol-capped oligonucleotide probes and gold nanoparticles or polymerase chain reaction based on K2A gene sequence. In the presence of the genomic DNA and oligonucleotide probes, a change in the color of gold nanoparticles and maximum changes in wavelength at 550-650 nm was achieved. In addition, the result showed specificity of 15 × 105 CFU/mL and 9 pg/µL by gold nanoparticles probes. The lower limit of detection obtained by PCR method was 1 pg/µL. Moreover, results demonstrated a great specificity of the designed primers and probes for colorimetric detection assay and PCR. Colorimetric detection using gold nanoparticle probe with advantages such as the lower time required for detection and no need for expensive detection instrumentation compared to the biochemical and molecular methods could be introduced for rapid, accurate detection of the bacteria.
Assuntos
Técnicas Biossensoriais/métodos , Colorimetria/métodos , Ouro/química , Klebsiella pneumoniae/isolamento & purificação , Nanopartículas Metálicas/química , Compostos de Sulfidrila/química , Técnicas Biossensoriais/instrumentaçãoRESUMO
Gene expression analysis is considered to be extremely important in many different biological researches. DNA-based diagnostic test, which contributes to DNA identification, has higher specificity, cost, and speed than some biochemical and molecular methods. In this study, we try to use the novel nano technology approach with Multiplex RT-PCR and Gold nano particular probes (GNPs-probes) in order to get gene expression in Curcumas melons. We used Agrobacterium tumefactions for gene transfer and GUS reporter gene as a reporter. After cDNA synthesis, Multiplex PCR and Multiplex RT-PCR techniques were used. Finally, probes were designed for RNA of GUS and Actin genes, and then the analysis of the gene expression using the probes attached to GNPs was carried out and the color changes in the GNPs were applied. In the following, probes hybridization was checked with DNA between 400 to 700 nm wavelengths and the highest rate was observed in the 550 to 650 nm. The results show that the simultaneous use of GNP-attached detectors and Multiplex RT-PCRcan reduce time and costmore considerably than somelaboratory methods for gene expiration investigation. Additionally, it can be seen thatthere is an increase in sensitivity and specificity of our investigation. Based on our findings, this can bea novel study doneusingMultiplex RT-PCRand unmodified AuNPs for gene transfer and expression detection to plants. We can claim that this assay has a remarkable advantage including rapid, cost-effectiveness, specificity and accuracy to detect transfer and expression genes in plants. Also,we can use this technique from other gene expressionsin many different biology samples.
Assuntos
Actinas/genética , Genes Reporter/genética , Ouro/química , Ouro/metabolismo , Nanopartículas Metálicas , Reação em Cadeia da Polimerase Multiplex/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Expressão GênicaRESUMO
Following publication [...].
RESUMO
Cyclophosphamide, a chemotherapy drug, increases oxidative stress in sperm and testicular tissue. This study evaluated the effect of silymarin, a potent antioxidant, on the quality of sperm and testicular tissue in mice treated with cyclophosphamide. NMRI adult male mice were divided into four groups: control; cyclophosphamide (intraperitoneal injection, 100 mg/kg, once a week); cyclophosphamide + silymarin; and silymarin (intraperitoneal injection, 200 mg/kg, every other day). After a 35-day treatment period, the caudal region of the epididymis was examined for sperm parameters, the right testis was used for stereological studies, and the left testis was used to assess biochemical factors. The data were statistically analyzed using SPSS software, one-way ANOVA and Tukey's test. In the cyclophosphamide group, there was a significant reduction in the mean total volume of testicular tissue, the average volume of seminiferous tubules and their components, and the average volume of interstitial tissue. Additionally, there was a notable decrease (p < 0.001) in the average number of Leydig cells, Sertoli cells, and sperm parameters. The mean concentration of testosterone hormone (p < 0.05) and total antioxidant capacity (TAC) level (p < 0.01) also significantly decreased, while the malondialdehyde (MDA) level increased significantly (p < 0.05). However, these adverse changes were mitigated in the cyclophosphamide + silymarin group compared to the cyclophosphamide group. Our results showed that silymarin as an antioxidant can mitigate the adverse effects of cyclophosphamide on testicular tissue and sperm parameters.
RESUMO
There is a significant need for fast, cost-effective, and highly sensitive protein target detection, particularly in the fields of food, environmental monitoring, and healthcare. The integration of high-affinity aptamers with metal-based nanomaterials has played a crucial role in advancing the development of innovative aptasensors tailored for the precise detection of specific proteins. Aptamers offer several advantages over commonly used molecular recognition methods, such as antibodies. Recently, a variety of metal-based aptasensors have been established. These metallic nanomaterials encompass noble metal nanoparticles, metal oxides, metal-carbon nanotubes, carbon quantum dots, graphene-conjugated metallic nanostructures, as well as their nanocomposites, metal-organic frameworks (MOFs), and MXenes. In general, these materials provide enhanced sensitivity through signal amplification and transduction mechanisms. This review primarily focuses on the advancement of aptasensors based on metallic materials for the highly sensitive detection of protein targets, including enzymes and growth factors. Additionally, it sheds light on the challenges encountered in this field and outlines future prospects. We firmly believe that this review will offer a comprehensive overview and fresh insights into metallic nanomaterials-based aptasensors and their capabilities, paving the way for the development of innovative point-of-care (POC) diagnostic devices.
RESUMO
DNA nanostructures exhibit versatile geometries and possess sophisticated capabilities not found in other nanomaterials. They serve as customizable nanoplatforms for orchestrating the spatial arrangement of molecular components, such as biomolecules, antibodies, or synthetic nanomaterials. This is achieved by incorporating oligonucleotides into the design of the nanostructure. In the realm of drug delivery to cancer cells, there is a growing interest in active targeting assays to enhance efficacy and selectivity. The active targeting approach involves a "key-lock" mechanism where the carrier, through its ligand, recognizes specific receptors on tumor cells, facilitating the release of drugs. Various DNA nanostructures, including DNA origami, Tetrahedral, nanoflower, cruciform, nanostar, nanocentipede, and nanococklebur, can traverse the lipid layer of the cell membrane, allowing cargo delivery to the nucleus. Aptamers, easily formed in vitro, are recognized for their targeted delivery capabilities due to their high selectivity for specific targets and low immunogenicity. This review provides a comprehensive overview of recent advancements in the formation and modification of aptamer-modified DNA nanostructures within drug delivery systems.
Assuntos
Aptâmeros de Nucleotídeos , DNA , Sistemas de Liberação de Medicamentos , Nanoestruturas , Nanoestruturas/química , Aptâmeros de Nucleotídeos/química , Sistemas de Liberação de Medicamentos/métodos , Humanos , DNA/químicaRESUMO
A diverse array of organic and inorganic materials, including nanomaterials, has been extensively employed in multifunctional biomedical applications. These applications encompass drug/gene delivery, tissue engineering, biosensors, photodynamic and photothermal therapy, and combinatorial sciences. Surface and bulk engineering of these materials, by incorporating biomolecules and aptamers, offers several advantages such as decreased cytotoxicity, improved stability, enhanced selectivity/sensitivity toward specific targets, and expanded multifunctional capabilities. In this comprehensive review, we specifically focus on aptamer-modified engineered materials for diverse biomedical applications. We delve into their mechanisms, advantages, and challenges, and provide an in-depth analysis of relevant literature references. This critical evaluation aims to enhance the scientific community's understanding of this field and inspire new ideas for future research endeavors.
Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Nanoestruturas , Medicina de Precisão , Sistemas de Liberação de Medicamentos , Nanoestruturas/uso terapêuticoRESUMO
Today, self-healing graphene- and MXene-based composites have attracted researchers due to the increase in durability as well as the cost reduction in long-time applications. Different studies have focused on designing novel self-healing graphene- and MXene-based composites with enhanced sensitivity, stretchability, and flexibility as well as improved electrical conductivity, healing efficacy, mechanical properties, and energy conversion efficacy. These composites with self-healing properties can be employed in the field of wearable sensors, supercapacitors, anticorrosive coatings, electromagnetic interference shielding, electronic-skin, soft robotics, etc. However, it appears that more explorations are still needed to achieve composites with excellent arbitrary shape adaptability, suitable adhesiveness, ideal durability, high stretchability, immediate self-healing responsibility, and outstanding electromagnetic features. Besides, optimizing reaction/synthesis conditions and finding suitable strategies for functionalization/modification are crucial aspects that should be comprehensively investigated. MXenes and graphene exhibited superior electrochemical properties with abundant surface terminations and great surface area, which are important to evolve biomedical and sensing applications. However, flexibility and stretchability are important criteria that need to be improved for their future applications. Herein, the most recent advancements pertaining to the applications and properties of self-healing graphene- and MXene-based composites are deliberated, focusing on crucial challenges and future perspectives.
RESUMO
Background: Obtaining consent from potential donor families is a challenging step in the donation process and is influenced by various factors. Methods: In this cross-sectional study, we utilized a questionnaire containing 14 questions about facilitators and barriers in the family interview process. The questionnaire was distributed in March 2023 to intensive care unit (ICU) nurses who had experience with donor family interviews. We collected the opinions of these respondents on hospital performance and drew comparisons between the studied hospitals. Results: A total of 60 participating ICU nurses provided mean scores for hospital performance in family interviews of 2.60±0.84 for type I hospitals (those providing neurosurgery and trauma care) and 2.035±0.890 for type II hospitals (those without neurosurgery and trauma services; P=0.04). The mean scores for public and private hospitals were 1.86±0.86 and 2.59±0.85, respectively (P=0.008). Based on the findings, the most important facilitators were the availability of organ donation staff and access to a professional team for family discussions. Conversely, poor physician communication skills and limited communication capabilities among medical staff were identified as significant barriers. Implementation of a professional team for family interviews was found to be more critical for type II hospitals. Poor physician communication skills were a significant concern in public hospitals, while families' lack of awareness of patient prognosis emerged as a key barrier in private hospitals. Conclusions: This study highlights numerous facilitators and barriers that vary across hospitals. Addressing these issues individually and developing tailored plans to enhance hospital performance in interviewing donor families is essential.
RESUMO
The functionalization of nanomaterials with suitable capping ligands or bioactive agents is an interesting strategy in designing nanosystems with suitable applicability and biocompatibility; the physicochemical and biological properties of these nanomaterials can be highly improved for biomedical applications. In this context, numerous explorations have been conducted in the functionalization of silver (Ag) and gold (Au) nanomaterials using suitable functional groups or agents to design nanosystems with unique physicochemical properties such as excellent biosensing capabilities, biocompatibility, targeting features, and multifunctionality for biomedical purposes. Future studies should be undertaken for designing novel functionalization tactics to improve the properties of Au- and Ag-based nanosystems and reduce their toxicity. The possible release of cytotoxic radicals or ions, the internalization of nanomaterials, the alteration of cellular signaling pathways, the translocation of these nanomaterials across the cell membranes into mitochondria, DNA damages, and the damage of cell membranes are the main causes of their toxicity, which ought to be comprehensively explored. In this study, recent advancements in diagnostic and therapeutic applications of functionalized Au and Ag nanomaterials are deliberated, focusing on important challenges and future directions.
RESUMO
Several pieces of research have been done on transition metal nanoparticles and their nanocomplexes as research on their physical and chemical properties and their relationship to biological features are of great importance. Among all their biological properties, the antibacterial and antimicrobial are especially important due to their high use for human needs. In this article, we will discuss the different synthesis and modification methods of silver (Ag) and gold (Au) nanoparticles and their physicochemical properties. We will also review some state-of-art studies and find the best relationship between the nanoparticles' physicochemical properties and potential antimicrobial activity. The possible antimicrobial mechanism of these types of nanoparticles will be discussed in-depth as well.
RESUMO
INTRODUCTION: Three-dimensional (3D) printing, also known as additive manufacturing (AM), is a modern technique/technology, which makes it possible to construct 3D objects from computer-aided design (CAD) digital models. This technology can be used in the progress of drug delivery systems, where porosity has played important role in attaining an acceptable level of biocompatibility and biodegradability with improved therapeutic effects. 3D printing may also provide the user possibility to control the dosage of each ingredient in order to a specific purpose, and makes it probable to improve the formulation of drug delivery systems. AREAS COVERED: This article covers the 3D printing technologies, bioactive materials including natural and synthetic polymers as well as some ceramics and minerals and their roles in drug delivery systems. EXPERT OPINION: This technology is feasible to fabricate drug products by incorporating multiple drugs in different parts in such a mode that these drugs can release from the section at a predetermined rate. Furthermore, this 3D printing technology has the potential to transform personalized therapy to various age-groups by design flexibility and precise dosing. In recent years, the potential use of this technology can be realized in a clinical situation where patients will acquire individualized medicine as per their requirement.