Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Dev Biol ; 430(1): 90-104, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28807781

RESUMO

Chordates are characterised by contractile muscle on either side of the body that promotes movement by side-to-side undulation. In the lineage leading to modern jawed vertebrates (crown group gnathostomes), this system was refined: body muscle became segregated into distinct dorsal (epaxial) and ventral (hypaxial) components that are separately innervated by the medial and hypaxial motors column, respectively, via the dorsal and ventral ramus of the spinal nerves. This allows full three-dimensional mobility, which in turn was a key factor in their evolutionary success. How the new gnathostome system is established during embryogenesis and how it may have evolved in the ancestors of modern vertebrates is not known. Vertebrate Engrailed genes have a peculiar expression pattern as they temporarily demarcate a central domain of the developing musculature at the epaxial-hypaxial boundary. Moreover, they are the only genes known with this particular expression pattern. The aim of this study was to investigate whether Engrailed genes control epaxial-hypaxial muscle development and innervation. Investigating chick, mouse and zebrafish as major gnathostome model organisms, we found that the Engrailed expression domain was associated with the establishment of the epaxial-hypaxial boundary of muscle in all three species. Moreover, the outgrowing epaxial and hypaxial nerves orientated themselves with respect to this Engrailed domain. In the chicken, loss and gain of Engrailed function changed epaxial-hypaxial somite patterning. Importantly, in all animals studied, loss and gain of Engrailed function severely disrupted the pathfinding of the spinal motor axons, suggesting that Engrailed plays an evolutionarily conserved role in the separate innervation of vertebrate epaxial-hypaxial muscle.


Assuntos
Galinhas/metabolismo , Proteínas de Homeodomínio/metabolismo , Movimento , Músculo Esquelético/inervação , Músculo Esquelético/metabolismo , Fatores de Transcrição/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Animais , Animais Recém-Nascidos , Axônios/metabolismo , Biomarcadores/metabolismo , Padronização Corporal/genética , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Desenvolvimento Muscular/genética , Mioblastos/citologia , Mioblastos/metabolismo , Fenótipo , Somitos/metabolismo
2.
Dev Dyn ; 241(12): 1886-900, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23073896

RESUMO

BACKGROUND: Repulsive guidance molecules (RGM) are high-affinity ligands for the Netrin receptor Neogenin, and they are crucial for nervous system development including neural tube closure; neuronal and neural crest cell differentiation and axon guidance. Recent studies implicated RGM molecules in bone morphogenetic protein signaling, which regulates a variety of developmental processes. Moreover, a role for RGMc in iron metabolism has been established. This suggests that RGM molecules may play important roles in non-neural tissues. RESULTS: To explore which tissues and processed may be regulated by RGM molecules, we systematically investigated the expression of RGMa and RGMb, the only RGM molecules currently known for avians, in the chicken embryo. CONCLUSIONS: Our study suggests so far unknown roles of RGM molecules in notochord, somite and skeletal muscle development.


Assuntos
Proteínas Aviárias/biossíntese , Padronização Corporal/fisiologia , Proteínas Ligadas por GPI/biossíntese , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Ferro/metabolismo , Desenvolvimento Muscular/fisiologia , Somitos/embriologia , Animais , Proteínas Aviárias/genética , Embrião de Galinha , Galinhas , Proteínas Ligadas por GPI/genética , Músculo Esquelético/citologia , Músculo Esquelético/embriologia , Notocorda/citologia , Notocorda/embriologia , Somitos/citologia
3.
Gene Expr Patterns ; 6(4): 383-93, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16412697

RESUMO

The related bHLH transcription factors MyoR and Capsulin control craniofacial myogenesis and the development of a number of mesoderm-derived organs in the mouse. However, their molecular function as regulators of differentiation processes is conversely debated. One approach to clarify the roles of these genes is to comparatively analyse their biological and molecular function in various vertebrate models. For this, a prerequisite is the determination of their similarity and their expression patterns. Here we show that vertebrate MyoR and Capsulin are paralogous genes with a high level of conservation regarding their protein sequence, their cDNA sequence and their chromosomal organisation. In the chick, both genes are co-expressed in the developing branchiomeric muscles, the anterior heart field and the splanchnopleura lining the foregut. However, both genes show unique expression domains in trunk skeletal muscle precursors, in the lateral and intermediate mesoderm.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Genoma , Fatores de Regulação Miogênica/metabolismo , Proteínas/metabolismo , Fatores de Transcrição/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Embrião de Galinha , Biologia Computacional , Proteínas de Ligação a DNA/genética , Hibridização In Situ , Fatores de Regulação Miogênica/genética , Proteínas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Distribuição Tecidual , Fatores de Transcrição/genética
4.
Dev Dyn ; 238(8): 2058-72, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19544582

RESUMO

The cerebellum is derived from the anterior-most segment of the embryonic hindbrain, rhombomere 1 (r1). Previous studies have shown that the early development and patterning of r1 requires fibroblast growth factor (FGF) signaling. However, many of the developmental processes that shape cerebellar morphogenesis take place later in embryonic development and during the first 2 weeks of postnatal life in the mouse. Here, we present a more comprehensive analysis of the expression patterns of genes encoding FGF receptors and secreted FGF ligands during these later stages of cerebellar development. We show that these genes are expressed in multiple cell types in the developing cerebellum, in an astonishing array of distinct patterns. These data suggest that FGF signaling functions throughout cerebellar development to regulate many processes that shape the formation of a functional cerebellum.


Assuntos
Cerebelo/embriologia , Cerebelo/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Animais , Diferenciação Celular , Proliferação de Células , Cerebelo/citologia , Cerebelo/crescimento & desenvolvimento , Feminino , Fatores de Crescimento de Fibroblastos/classificação , Regulação da Expressão Gênica no Desenvolvimento , Hibridização In Situ , Ligantes , Camundongos , Camundongos Transgênicos , Gravidez , Receptores de Fatores de Crescimento de Fibroblastos/genética , Transdução de Sinais
5.
Dev Dyn ; 236(9): 2397-409, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17654605

RESUMO

Somitic and head mesoderm contribute to cartilage and bone and deliver the entire skeletal musculature. Studies on avian somite patterning and cell differentiation led to the view that these processes depend solely on cues from surrounding tissues. However, evidence is accumulating that some developmental decisions depend on information within the somitic tissue itself. Moreover, recent studies established that head and somitic mesoderm, though delivering the same tissue types, are set up to follow their own, distinct developmental programmes. With a particular focus on the chicken embryo, we review the current understanding of how extrinsic signalling, operating in a framework of intrinsically regulated constraints, controls paraxial mesoderm patterning and cell differentiation.


Assuntos
Âmnio/embriologia , Padronização Corporal , Diferenciação Celular , Biologia do Desenvolvimento/métodos , Regulação da Expressão Gênica no Desenvolvimento , Animais , Linhagem da Célula , Embrião de Galinha , Mesoderma/metabolismo , Modelos Anatômicos , Modelos Biológicos , Somitos
6.
Dev Dyn ; 235(7): 1884-94, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16680727

RESUMO

Trunk skeletal muscles are segregated into dorsomedial epaxial and ventrolateral hypaxial muscles, separated by a myoseptum. In amniotes, they are generated from a transient structure, the dermomyotome, which lays down muscle, namely the myotome underneath. However, the dermomyotome and myotome are dorsoventrally continuous, with no morphologically defined epaxial-hypaxial boundary. The transcription factors En1 and Sim1 have been shown to molecularly subdivide the amniote dermomyotome, with En1 labeling the epaxial dermomyotome and Sim1 the hypaxial counterpart. Here, we demonstrate that En1 and Sim1 expression persists in cells leaving the dermomyotome, superimposing the expression boundary onto muscle and skin. En1-expressing cells colonize the myotome initially from the rostral and caudal lips, and slightly later, directly from the de-epithelializing dermomyotomal center. En1 expression in the myotome is concomitant with the appearance of Fgfr4/Pax7-expressing mitotically active myoblasts. This finding suggests that Fgfr4+/Pax7+/En1+ cells carry their expression with them when entering the myotome. Furthermore, it suggests that the epaxial-hypaxial boundary of the myotome is established through the late arising, mitotically active myoblasts.


Assuntos
Desenvolvimento Muscular , Músculo Esquelético/embriologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Padronização Corporal , Diferenciação Celular , Linhagem da Célula , Embrião de Galinha , Proteínas de Homeodomínio/metabolismo , Músculo Esquelético/metabolismo , Mioblastos/citologia , Mioblastos/metabolismo , Fator de Transcrição PAX7/metabolismo , Proteínas Repressoras/metabolismo , Somitos/citologia , Somitos/metabolismo
7.
Dev Biol ; 274(2): 348-69, 2004 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-15385164

RESUMO

In all jaw-bearing vertebrates, three-dimensional mobility relies on segregated, separately innervated epaxial and hypaxial skeletal muscles. In amniotes, these muscles form from the morphologically continuous dermomyotome and myotome, whose epaxial-hypaxial subdivision and hence the formation of distinct epaxial-hypaxial muscles is not understood. Here we show that En1 expression labels a central subdomain of the avian dermomyotome, medially abutting the expression domain of the lead-lateral or hypaxial marker Sim1. En1 expression is maintained when cells from the En1-positive dermomyotome enter the myotome and dermatome, thereby superimposing the En1-Sim1 expression boundary onto the developing musculature and dermis. En1 cells originate from the dorsomedial edge of the somite. Their development is under positive control by notochord and floor plate (Shh), dorsal neural tube (Wnt1) and surface ectoderm (Wnt1-like signalling activity) but negatively regulated by the lateral plate mesoderm (BMP4). This dependence on epaxial signals and suppression by hypaxial signals places En1 into the epaxial somitic programme. Consequently, the En1-Sim1 expression boundary marks the epaxial-hypaxial dermomyotomal or myotomal boundary. In cell aggregation assays, En1- and Sim1-expressing cells sort out, suggesting that the En1-Sim1 expression boundary may represent a true compartment boundary, foreshadowing the epaxial-hypaxial segregation of muscle.


Assuntos
Padronização Corporal , Embrião de Galinha , Desenvolvimento Muscular/fisiologia , Músculo Esquelético/embriologia , Somitos , Animais , Carbocianinas/metabolismo , Linhagem da Célula , Embrião de Galinha/anatomia & histologia , Embrião de Galinha/fisiologia , Quimera/anatomia & histologia , Quimera/fisiologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Ectoderma/citologia , Ectoderma/fisiologia , Corantes Fluorescentes/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog , Hibridização In Situ , Mesoderma/citologia , Mesoderma/fisiologia , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Codorniz/anatomia & histologia , Codorniz/embriologia , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transdução de Sinais/fisiologia , Somitos/citologia , Somitos/fisiologia , Transativadores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Wnt , Proteína Wnt1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA