RESUMO
Triglyceride-bound fatty acids constitute the majority of lipids in human milk and may affect infant growth. We describe the composition of fatty acids in human milk, identify predictors, and investigate associations between fatty acids and infant growth using data from the Norwegian Human Milk Study birth cohort. In a subset of participants (n = 789, 30% of cohort), oversampled for overweight and obesity, we analyzed milk concentrations of detectable fatty acids. We modelled percent composition of fatty acids in relation to maternal body mass index, pregnancy weight gain, parity, smoking, delivery mode, gestational age, fish intake, and cod liver oil intake. We assessed the relation between fatty acids and infant growth from 0 to 6 months. Of the factors tested, excess pregnancy weight gain was positively associated with monounsaturated fatty acids and inversely associated with stearic acid. Multiparity was negatively associated with monounsaturated fatty acids and n-3 fatty acids while positively associated with stearic acid. Gestational age was inversely associated with myristic acid. Medium-chain saturated fatty acids were inversely associated with infant growth, and mono-unsaturated fatty acids, particularly oleic acid, were associated with an increased odds of rapid growth. Notably, excessive maternal weight gain was associated with cis-vaccenic acid, which was further associated with a threefold increased risk of rapid infant growth (OR = 2.9, 95% CI 1.2-6.6), suggesting that monounsaturated fatty acids in milk may play a role in the intergenerational transmission of obesity.
Assuntos
Ácidos Graxos Ômega-3 , Ganho de Peso na Gestação , Animais , Coorte de Nascimento , Óleo de Fígado de Bacalhau , Ácidos Graxos , Ácidos Graxos Monoinsaturados , Feminino , Humanos , Lactente , Leite Humano , Ácidos Mirísticos , Obesidade , Ácidos Oleicos , Gravidez , Ácidos Esteáricos , Triglicerídeos , Aumento de PesoRESUMO
Human milk lipids are essential for infant health. However, little is known about the relationship between total milk fatty acid (FA) composition and polar lipid species composition. Therefore, we aimed to characterize the relationship between the FA and polar lipid species composition in human milk, with a focus on differences between milk with higher or lower milk fat content. From the Norwegian Human Milk Study (HUMIS, 2002-2009), a subset of 664 milk samples were analyzed for FA and polar lipid composition. Milk samples did not differ in major FA, phosphatidylcholine, or sphingomyelin species percentages between the highest and lowest quartiles of total FA concentration. However, milk in the highest FA quartile had a lower phospholipid-to-total-FA ratio and a lower sphingomyelin-to-phosphatidylcholine ratio than the lowest quartile. The only FAs associated with total phosphatidylcholine or sphingomyelin were behenic and tridecanoic acids, respectively. Milk FA and phosphatidylcholine and sphingomyelin species containing these FAs showed modest correlations. Associations of arachidonic and docosahexaenoic acids with percentages of phosphatidylcholine species carrying these FAs support the conclusion that the availability of these FAs limits the synthesis of phospholipid species containing them.