Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 24(17): 5125-5131, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38639405

RESUMO

We report a study of thickness-dependent interband and intraband magnetic breakdown by thermoelectric quantum oscillations in ZrSiSe nanoplates. Under high magnetic fields of up to 30 T, quantum oscillations arising from degenerated hole pockets were observed in thick ZrSiSe nanoplates. However, when decreasing the thickness, plentiful multifrequency quantum oscillations originating from hole and electron pockets are captured. These multiple frequencies can be explained by the emergent interband magnetic breakdown enclosing individual hole and electron pockets and intraband magnetic breakdown within spin-orbit coupling (SOC) induced saddle-shaped electron pockets, resulting in the enhanced contribution to thermal transport in thin ZrSiSe nanoplates. These experimental frequencies agree well with theoretical calculations of the intriguing tunneling processes. Our results introduce a new member of magnetic breakdown to the field and open up a dimension for modulating magnetic breakdown, which holds fundamental significance for both low-dimensional topological materials and the physics of magnetic breakdown.

2.
Nano Lett ; 23(19): 9026-9033, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37767914

RESUMO

The quantum Hall effect is one of the exclusive properties displayed by Dirac Fermions in topological insulators, which propagates along the chiral edge state and gives rise to quantized electron transport. However, the quantum Hall effect formed by the nondegenerate Dirac surface states has been elusive so far. Here, we demonstrate the nondegenerate integer quantum Hall effect from the topological surface states in three-dimensional (3D) topological insulator ß-Ag2Te nanostructures. Surface-state dominant conductance renders quantum Hall conductance plateaus with a step of e2/h, along with typical thermopower behaviors of two-dimensional (2D) massless Dirac electrons. The 2D nature of the topological surface states is proven by the electrical and thermal transport responses under tilted magnetic fields. Moreover, the degeneracy of the surface states is removed by structure inversion asymmetry (SIA). The evidenced SIA-induced nondegenerate integer quantum Hall effect in low-symmetry ß-Ag2Te has implications for both fundamental study and the realization of topological magneto-electric effects.

3.
Nano Lett ; 21(1): 288-297, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33346673

RESUMO

The motion of Abrikosov vortices is the dominant origin of dissipation in type II superconductors subjected to a magnetic field, which leads to a finite electrical resistance. It is generally believed that the increase in the magnetic field results in the aggravation of energy dissipation through the increase in vortex density. Here, we show a distinctive re-entrance of the dissipationless state in quasi-one-dimensional superconducting Ta2PdS5 nanostrips. Utilizing magnetotransport measurements, we unveil a prominent magnetoresistance drop with the increase in the magnetic field below the superconducting transition temperature, manifesting itself as a giant re-entrance to the superconducting phase. Time-dependent Ginzburg-Landau calculations show that this is originated from the suppression of the vortex motion by the increased energy barrier on the edges. Interestingly, both our experiments and simulations demonstrate that this giant re-entrance of superconductivity occurs only in certain geometrical regimes because of the finite size of the vortex.

4.
Nano Lett ; 20(10): 7004-7010, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-32897723

RESUMO

Stimulated by novel properties in topological insulators, experimentally realizing quantum phases of matter and employing control over their properties have become a central goal in condensed matter physics. ß-silver telluride (Ag2Te) is predicted to be a new type narrow-gap topological insulator. While enormous efforts have been plunged into the topological nature in silver chalcogenides, sophisticated research on low-dimensional nanostructures remains unexplored. Here, we report the record-high bulk carrier mobility of 298 600 cm2/(V s) in high-quality Ag2Te nanoplates and the coexistence of the surface and bulk state from systematic Shubnikov-de Haas oscillations measurements. By tuning the correlation between the top and bottom surfaces, we can effectively enhance the contribution of the surface to the total conductance up to 87% at 130 V. These results are instrumental to the high-mobility physics study and even suitable to explore exotic topological phenomena in this material system.

5.
Front Microbiol ; 15: 1329521, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38486697

RESUMO

Background: Numerous investigations have underscored the causal effect between chronic pain (CP) and gut microbiota, jointly contributing to the onset and development of widespread CP. Nonetheless, there was still uncertainty about the causal effect between gut microbiota and chronic regional pain (CRP). Methods: Genome-wide association study (GWAS) summary data of gut microbial taxa (MiBioGen Consortium: 211 microbiotas and the Dutch Microbiome Project: 207 microbiotas) and eight types of CRP were used to reveal the causal effect between persistent pain in a specific region of the body and gut microbiota. A two-sample bidirectional Mendelian randomization (MR) design was used. In order to ensure the accuracy of the results, multiple sensitivity analyses were employed. Results: This study uncovered significant causal associations between six gut microbial taxa and three types of CRP (forward: Genus Parabacteroides for general pain; Class Bacteroidia, Order Bacteroidales, and Phylum Bacteroidetes for back pain. Reverse: knee pain for Genus Howardella and Order Coriobacteriales) by forward and reverse MR analysis. These findings had been verified by a rigorous Bonferroni correction. Furthermore, this research identified 19 microbial taxa that exhibited potential correlations with four types of CRP. There are no significant or potential gut microbiotas that were associated with other types of CRP, including fascial pain, stomach or abdominal pain, and hip pain. Conclusion: This two-sample bidirectional MR analysis unveiled the causality between gut microbial taxa and eight CRP conditions. The findings reveal the interplay between CRP and 6 gut microbiotas while also delineating 19 potential specific microbial taxa corresponding to diverse locations of persistent pain.

6.
Nat Commun ; 15(1): 5651, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38969644

RESUMO

The bulk photovoltaic effect (BPVE) in non-centrosymmetric materials has attracted significant attention in recent years due to its potential to surpass the Shockley-Queisser limit. Although these materials are strictly constrained by symmetry, progress has been made in artificially reducing symmetry to stimulate BPVE in wider systems. However, the complexity of these techniques has hindered their practical implementation. In this study, we demonstrate a large intrinsic photocurrent response in centrosymmetric topological insulator Ag2Te, attributed to the surface photogalvanic effect (SPGE), which is induced by symmetry reduction of the surface. Through diverse spatially-resolved measurements on specially designed devices, we directly observe that SPGE in Ag2Te arises from the difference between two opposite photocurrent flows generated from the top and bottom surfaces. Acting as an efficient SPGE material, Ag2Te demonstrates robust performance across a wide spectral range from visible to mid-infrared, making it promising for applications in solar cells and mid-infrared detectors. More importantly, SPGE generated on low-symmetric surfaces can potentially be found in various systems, thereby inspiring a broader range of choices for photovoltaic materials.

7.
Front Microbiol ; 14: 1256874, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37920262

RESUMO

Background and aim: Previous studies have reported an association between gut microbiota and cirrhosis. However, the causality between intestinal flora and liver cirrhosis still remains unclear. In this study, bi-directional Mendelian randomization (MR) analysis was used to ascertain the potential causal effect between gut microbes and cirrhosis. Methods: Large-scale Genome Wide Association Study (GWAS) data of cirrhosis and gut microbes were obtained from FinnGen, Mibiogen consortium, and a GWAS meta-analysis of Alcoholic cirrhosis (ALC). Two-sample MR was performed to determine the causal relationship between gut microbiota and cirrhosis. Furthermore, a bi-directional MR analysis was employed to examine the direction of the causal relations. Result: In MR analysis, we found that 21 gut microbiotas were potentially associated with cirrhosis. In reverse MR analysis, 11 gut microbiotas displayed potentially associations between genetic liability in the gut microbiome and cirrhosis. We found that the family Lachnospiraceae (OR: 1.59, 95% CI:1.10-2.29) might be harmful in cirrhotic conditions (ICD-10: K74). Furthermore, the genus Erysipelatoclostridium might be a protective factor for cirrhosis (OR:0.55, 95% CI:0.34-0.88) and PBC (OR:0.68, 95% CI:0.52-0.89). Combining the results from the MR analysis and reverse MR analysis, we firstly identified the Genus Butyricicoccus had a bi-directional causal effect on PBC (Forward: OR: 0.37, 95% CI:0.15-0.93; Reverse: OR: 1.03, 95% CI:1.00-1.05). Conclusion: We found a new potential causal effect between cirrhosis and intestinal flora and provided new insights into the role of gut microbiota in the pathological progression of liver cirrhosis.

8.
ACS Nano ; 16(8): 12244-12252, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35929766

RESUMO

Due to the nontrivial electronic structure, Cd3As2 is predicted to possess various transport properties and outstanding photoresponses. Photodetectors based on topological materials are mostly made up of nanoplates, yet monolithic in situ heteroepitaxial Cd3As2 photodetectors are rarely reported to date owing to the crystal mismatch between Cd3As2 and semiconductors. Here, we demonstrate Cd3As2/ZnxCd1-xTe/GaSb vertical heteroepitaxial photodetectors via molecule beam epitaxy. By constructing dual-Schottky junctions, these photodetectors show high responsivity and external quantum efficiency in a broadband spectrum. Based on the strong and fast photoresponse, we achieved visible light to near-infrared imaging using a one-pixel imaging system with a galvo. Our results illustrate that the integration of three-dimensional Dirac semimetal Cd3As2 with semiconductors has potential applications in broadband photodetection and infrared cameras.

9.
Natl Sci Rev ; 9(6): nwab117, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35822066

RESUMO

Two-dimensional (2D) ferromagnetic materials have been discovered with tunable magnetism and orbital-driven nodal-line features. Controlling the 2D magnetism in exfoliated nanoflakes via electric/magnetic fields enables a boosted Curie temperature (T C) or phase transitions. One of the challenges, however, is the realization of high T C 2D magnets that are tunable, robust and suitable for large scale fabrication. Here, we report molecular-beam epitaxy growth of wafer-scale Fe3+XGeTe2 films with T C above room temperature. By controlling the Fe composition in Fe3+XGeTe2, a continuously modulated T C in a broad range of 185-320 K has been achieved. This widely tunable T C is attributed to the doped interlayer Fe that provides a 40% enhancement around the optimal composition X = 2. We further fabricated magnetic tunneling junction device arrays that exhibit clear tunneling signals. Our results show an effective and reliable approach, i.e. element doping, to producing robust and tunable ferromagnetism beyond room temperature in a large-scale 2D Fe3+XGeTe2 fashion.

10.
ACS Nano ; 15(12): 19513-19521, 2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-34894654

RESUMO

Recently, two-dimensional magnetic material has attracted attention worldwide due to its potential application in magnetic memory devices. The previous concept of domain walls driven by current pulses is a disordered motion. Further investigation of the mechanism is urgently lacking. Here, Fe3GeTe2, a typical high-Curie temperature (TC) two-dimensional magnetic material, is chosen to explore the magnetic domain dynamics by in situ Lorentz transmission electron microscopy experiments. It has been found that the stripe domain could be driven, compressed, and expanded by the pulses with a critical current density. Revealed by micromagnetic simulations, all the domain walls cannot move synchronously due to the competition between demagnetization energy and spin-transfer torque effect. In consideration of the reflection of high-frequency pulses, the disordered motion could be well explained together. The multiple stable states of the magnetic structure due to the weak exchange interaction in a two-dimensional magnet provides complex dynamic processes. Based on plenty of experiments, a cluster of domain walls could be more steady and move more synchronously under the drive of pulse current. The complication of domain wall motions presents a challenge in race track memory devices and two-dimensional magnetic material will be a better choice for application research.

11.
Nat Commun ; 12(1): 6580, 2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34772912

RESUMO

Superconductor-ferromagnet interfaces in two-dimensional heterostructures present a unique opportunity to study the interplay between superconductivity and ferromagnetism. The realization of such nanoscale heterostructures in van der Waals (vdW) crystals remains largely unexplored due to the challenge of making atomically-sharp interfaces from their layered structures. Here, we build a vdW ferromagnetic Josephson junction (JJ) by inserting a few-layer ferromagnetic insulator Cr2Ge2Te6 into two layers of superconductor NbSe2. The critical current and corresponding junction resistance exhibit a hysteretic and oscillatory behavior against in-plane magnetic fields, manifesting itself as a strong Josephson coupling state. Also, we observe a central minimum of critical current in some JJ devices as well as a nontrivial phase shift in SQUID structures, evidencing the coexistence of 0 and π phase in the junction region. Our study paves the way to exploring sensitive probes of weak magnetism and multifunctional building-blocks for phase-related superconducting circuits using vdW heterostructures.

12.
Sci Bull (Beijing) ; 66(18): 1830-1838, 2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36654392

RESUMO

The interplay between quenched disorder and critical behavior in quantum phase transitions is conceptually fascinating and of fundamental importance for understanding phase transitions. However, it is still unclear whether or not the quenched disorder influences the universality class of quantum phase transitions. More crucially, the absence of superconducting-metal transitions under in-plane magnetic fields in 2D superconductors imposes constraints on the universality of quantum criticality. Here, we observe the thickness-tuned universality class of superconductor-metal transition by changing the disorder strength in ß-W films with varying thickness. The finite-size scaling uncovers the switch of universality class: quantum Griffiths singularity to multiple quantum criticality at a critical thickness of tc⊥1~8nm and then from multiple quantum criticality to single criticality at tc⊥2~16nm. Moreover, the superconducting-metal transition is observed for the first time under in-plane magnetic fields and the universality class is changed at tc‖~8nm. The observation of thickness-tuned universality class under both out-of-plane and in-plane magnetic fields provides broad information for the disorder effect on superconducting-metal transitions and quantum criticality.

13.
Natl Sci Rev ; 7(9): 1468-1475, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34691543

RESUMO

WTe2, as a type-II Weyl semimetal, has 2D Fermi arcs on the (001) surface in the bulk and 1D helical edge states in its monolayer. These features have recently attracted wide attention in condensed matter physics. However, in the intermediate regime between the bulk and monolayer, the edge states have not been resolved owing to its closed band gap which makes the bulk states dominant. Here, we report the signatures of the edge superconductivity by superconducting quantum interference measurements in multilayer WTe2 Josephson junctions and we directly map the localized supercurrent. In thick WTe2 ([Formula: see text], the supercurrent is uniformly distributed by bulk states with symmetric Josephson effect ([Formula: see text]). In thin WTe2 (10 nm), however, the supercurrent becomes confined to the edge and its width reaches up to [Formula: see text]and exhibits non-symmetric behavior [Formula: see text]. The ability to tune the edge domination by changing thickness and the edge superconductivity establishes WTe2 as a promising topological system with exotic quantum phases and a rich physics.

14.
ACS Nano ; 14(8): 9512-9520, 2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32538609

RESUMO

Recently, 2D ferromagnetic materials have aroused wide interest for their magnetic properties and potential applications in spintronic and topological devices. However, their actual applications have been severely hindered by intricate challenges such as the unclear spin arrangement. In particular, the evolution of spin texture driven by high-density electron current, which is an essential condition for fabricating devices, remains unclear. Herein, the current-pulse-driven spin textures in 2D ferromagnetic material Fe3GeTe2 have been thoroughly investigated by in situ Lorentz transmission electron microscopy. The dynamic experiments reveal that the stripe domain structure in the AB and AC planes can be broken and rearranged by the high-density current. In particular, the density of domain walls can be modulated, which offers an avenue to achieve a high-density domain structure. This phenomenon is attributed to the weak interlayer exchange interaction in 2D metallic ferromagnetic materials and the strong disturbance from the high-density current. Therefore, a bubble domain structure and random magnetization in Fe3GeTe2 can be acquired by synchronous current pulses and magnetic fields. These achievements reveal domain structure transitions driven by the current in 2D metallic magnetic materials and provide references for the practical applications.

15.
Nat Commun ; 11(1): 5634, 2020 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-33159059

RESUMO

The rise of two-dimensional (2D) crystalline superconductors has opened a new frontier of investigating unconventional quantum phenomena in low dimensions. However, despite the enormous advances achieved towards understanding the underlying physics, practical device applications like sensors and detectors using 2D superconductors are still lacking. Here, we demonstrate nonreciprocal antenna devices based on atomically thin NbSe2. Reversible nonreciprocal charge transport is unveiled in 2D NbSe2 through multi-reversal antisymmetric second harmonic magnetoresistance isotherms. Based on this nonreciprocity, our NbSe2 antenna devices exhibit a reversible nonreciprocal sensitivity to externally alternating current (AC) electromagnetic waves, which is attributed to the vortex flow in asymmetric pinning potentials driven by the AC driving force. More importantly, a successful control of the nonreciprocal sensitivity of the antenna devices has been achieved by applying electromagnetic waves with different frequencies and amplitudes. The device's response increases with increasing electromagnetic wave amplitude and exhibits prominent broadband sensing from 5 to 900 MHz.

16.
Natl Sci Rev ; 7(4): 745-754, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34692093

RESUMO

Mechanically exfoliated two-dimensional ferromagnetic materials (2D FMs) possess long-range ferromagnetic order and topologically nontrivial skyrmions in few layers. However, because of the dimensionality effect, such few-layer systems usually exhibit much lower Curie temperature (T C) compared to their bulk counterparts. It is therefore of great interest to explore effective approaches to enhance their T C, particularly in wafer-scale for practical applications. Here, we report an interfacial proximity-induced high-T C 2D FM Fe3GeTe2 (FGT) via A-type antiferromagnetic material CrSb (CS) which strongly couples to FGT. A superlattice structure of (FGT/CS)n, where n stands for the period of FGT/CS heterostructure, has been successfully produced with sharp interfaces by molecular-beam epitaxy on 2-inch wafers. By performing elemental specific X-ray magnetic circular dichroism (XMCD) measurements, we have unequivocally discovered that T C of 4-layer Fe3GeTe2 can be significantly enhanced from 140 K to 230 K because of the interfacial ferromagnetic coupling. Meanwhile, an inverse proximity effect occurs in the FGT/CS interface, driving the interfacial antiferromagnetic CrSb into a ferrimagnetic state as evidenced by double-switching behavior in hysteresis loops and the XMCD spectra. Density functional theory calculations show that the Fe-Te/Cr-Sb interface is strongly FM coupled and doping of the spin-polarized electrons by the interfacial Cr layer gives rise to the T C enhancement of the Fe3GeTe2 films, in accordance with our XMCD measurements. Strikingly, by introducing rich Fe in a 4-layer FGT/CS superlattice, T C can be further enhanced to near room temperature. Our results provide a feasible approach for enhancing the magnetic order of few-layer 2D FMs in wafer-scale and render opportunities for realizing realistic ultra-thin spintronic devices.

17.
Nat Commun ; 9(1): 4656, 2018 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-30405120

RESUMO

Quantum Griffiths singularity was theoretically proposed to interpret the phenomenon of divergent dynamical exponent in quantum phase transitions. It has been discovered experimentally in three-dimensional (3D) magnetic metal systems and two-dimensional (2D) superconductors. But, whether this state exists in lower dimensional systems remains elusive. Here, we report the signature of quantum Griffiths singularity state in quasi-one-dimensional (1D) Ta2PdS5 nanowires. The superconducting critical field shows a strong anisotropic behavior and a violation of the Pauli limit in a parallel magnetic field configuration. Current-voltage measurements exhibit hysteresis loops and a series of multiple voltage steps in transition to the normal state, indicating a quasi-1D nature of the superconductivity. Surprisingly, the nanowire undergoes a superconductor-metal transition when the magnetic field increases. Upon approaching the zero-temperature quantum critical point, the system uncovers the signature of the quantum Griffiths singularity state arising from enhanced quenched disorders, where the dynamical critical exponent becomes diverging rather than being constant.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA