Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Entropy (Basel) ; 24(8)2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-36010697

RESUMO

In this article, a new one parameter survival model is proposed using the Kavya-Manoharan (KM) transformation family and the inverse length biased exponential (ILBE) distribution. Statistical properties are obtained: quantiles, moments, incomplete moments and moment generating function. Different types of entropies such as Rényi entropy, Tsallis entropy, Havrda and Charvat entropy and Arimoto entropy are computed. Different measures of extropy such as extropy, cumulative residual extropy and the negative cumulative residual extropy are computed. When the lifetime of the item under use is assumed to follow the Kavya-Manoharan inverse length biased exponential (KMILBE) distribution, the progressive-stress accelerated life tests are considered. Some estimating approaches, such as the maximum likelihood, maximum product of spacing, least squares, and weighted least square estimations, are taken into account while using progressive type-II censoring. Furthermore, interval estimation is accomplished by determining the parameters' approximate confidence intervals. The performance of the estimation approaches is investigated using Monte Carlo simulation. The relevance and flexibility of the model are demonstrated using two real datasets. The distribution is very flexible, and it outperforms many known distributions such as the inverse length biased, the inverse Lindley model, the Lindley, the inverse exponential, the sine inverse exponential and the sine inverse Rayleigh model.

2.
Heliyon ; 10(18): e36774, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39315172

RESUMO

This research proposes the Kavya-Manoharan Unit Exponentiated Half Logistic (KM-UEHL) distribution as a novel tool for epidemiological modeling of COVID-19 data. Specifically designed to analyze data constrained to the unit interval, the KM-UEHL distribution builds upon the unit exponentiated half logistic model, making it suitable for various data from COVID-19. The paper emphasizes the KM-UEHL distribution's adaptability by examining its density and hazard rate functions. Its effectiveness is demonstrated in handling the diverse nature of COVID-19 data through these functions. Key characteristics like moments, quantile functions, stress-strength reliability, and entropy measures are also comprehensively investigated. Furthermore, the KM-UEHL distribution is employed for forecasting future COVID-19 data under a progressive Type-II censoring scheme, which acknowledges the time-dependent nature of data collection during outbreaks. The paper presents various methods for constructing prediction intervals for future-order statistics, including maximum likelihood estimation, Bayesian inference (both point and interval estimates), and upper-order statistics approaches. The Metropolis-Hastings and Gibbs sampling procedures are combined to create the Markov chain Monte Carlo simulations because it is mathematically difficult to acquire closed-form solutions for the posterior density function in the Bayesian framework. The theoretical developments are validated with numerical simulations, and the practical applicability of the KM-UEHL distribution is showcased using real-world COVID-19 datasets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA